49 research outputs found

    Multiple Exciter Placement for Ground Vibration Test of X-59 Aircraft Using Topology Optimization

    Get PDF
    These slides and the companion paper describe a exciter placement technique using topology optimization

    Unsteady Aerodynamic Model Tuning for Precise Flutter Prediction

    Get PDF
    A simple method for an unsteady aerodynamic model tuning is proposed in this study. This method is based on the direct modification of the aerodynamic influence coefficient matrices. The aerostructures test wing 2 flight-test data is used to demonstrate the proposed model tuning method. The flutter speed margin computed using only the test validated structural dynamic model can be improved using the additional unsteady aerodynamic model tuning, and then the flutter speed margin requirement of 15 % in military specifications can apply towards the test validated aeroelastic model. In this study, unsteady aerodynamic model tunings are performed at two time invariant flight conditions, at Mach numbers of 0.390 and 0.456. When the Mach number for the unsteady model tuning approaches to the measured fluttering Mach number, 0.502, at the flight altitude of 9,837 ft, the estimated flutter speed is approached to the measured flutter speed at this altitude. The minimum flutter speed difference between the estimated and measured flutter speed is -.14 %

    Object-Oriented Multi-Disciplinary Design, Analysis, and Optimization Tool

    Get PDF
    An Object-Oriented Optimization (O3) tool was developed that leverages existing tools and practices, and allows the easy integration and adoption of new state-of-the-art software. At the heart of the O3 tool is the Central Executive Module (CEM), which can integrate disparate software packages in a cross platform network environment so as to quickly perform optimization and design tasks in a cohesive, streamlined manner. This object-oriented framework can integrate the analysis codes for multiple disciplines instead of relying on one code to perform the analysis for all disciplines. The CEM was written in FORTRAN and the script commands for each performance index were submitted through the use of the FORTRAN Call System command. In this CEM, the user chooses an optimization methodology, defines objective and constraint functions from performance indices, and provides starting and side constraints for continuous as well as discrete design variables. The structural analysis modules such as computations of the structural weight, stress, deflection, buckling, and flutter and divergence speeds have been developed and incorporated into the O3 tool to build an object-oriented Multidisciplinary Design, Analysis, and Optimization (MDAO) tool

    Shape Sensing for Wings with Spars and Ribs Using Simulated Strain

    Get PDF
    Active trim shape control can be used to minimize error between target and actual aircraft trim shape during flight. Trim shape sensing for aircraft during flight is not only important for highly flexible aircraft, such as the National Aeronautics and Space Administration (NASA) Helios Prototype remotely piloted flying wing aircraft, but also for a delta-wing type aircraft, such as a supersonic commercial transport aircraft. A two-step theory utilizing distributed strain for a real-time shape sensing of a full three-dimensional structure has been introduced previously. This study focuses on the application of the two-step theory to finite element models of a wing with spars and ribs such as the X-59 QueSST aircraft (Lockheed Martin Corporation, Bethesda, Maryland), a tapered wing, a dihedral/anhedral wing, and a stiffened dihedral/anhedral wing. A finely meshed finite element structural model is desired to capture accurate curvature distributions along the neutral axes of the wing cross sections during pre-test analysis for shape sensing of a wing with ribs and spars. The two-step theory used in this study gives excellent deformation correlation with the MSC/NASTRAN (MSC Software, Newport Beach, California) results along the neutral axis for all test cases used in this study except the X-59 QueSST aircraft

    Preliminary Development of an Object-Oriented Optimization Tool

    Get PDF
    The National Aeronautics and Space Administration Dryden Flight Research Center has developed a FORTRAN-based object-oriented optimization (O3) tool that leverages existing tools and practices and allows easy integration and adoption of new state-of-the-art software. The object-oriented framework can integrate the analysis codes for multiple disciplines, as opposed to relying on one code to perform analysis for all disciplines. Optimization can thus take place within each discipline module, or in a loop between the central executive module and the discipline modules, or both. Six sample optimization problems are presented. The first four sample problems are based on simple mathematical equations; the fifth and sixth problems consider a three-bar truss, which is a classical example in structural synthesis. Instructions for preparing input data for the O3 tool are presented

    Unsteady Aerodynamic Force Sensing from Strain Data

    Get PDF
    A simple approach for computing unsteady aerodynamic forces from simulated measured strain data is proposed in this study. First, the deflection and slope of the structure are computed from the unsteady strain using the two-step approach. Velocities and accelerations of the structure are computed using the autoregressive moving average model, on-line parameter estimator, low-pass filter, and a least-squares curve fitting method together with analytical derivatives with respect to time. Finally, aerodynamic forces over the wing are computed using modal aerodynamic influence coefficient matrices, a rational function approximation, and a time-marching algorithm

    Jig-Shape Optimization of a Low-Boom Supersonic Aircraft

    Get PDF
    A simple approach for optimizing the jig-shape is proposed in this study. This simple approach is based on an unconstrained optimization problem and applied to a low-boom supersonic aircraft. In this study, the jig-shape optimization is performed using the two-step approach. First, starting design variables are computed using the least-squares surface fitting technique. Next, the jig-shape is further tuned using a numerical optimization procedure based on an in-house object-oriented optimization tool. During the numerical optimization procedure, a design jig-shape is determined by the baseline jig-shape and basis functions. A total of 12 symmetric mode shapes of the cruise-weight configuration, rigid pitch shape, rigid left and right stabilator rotation shapes, and a residual shape are selected as sixteen basis functions. After three optimization runs, the trim shape error distribution is improved, and the maximum trim shape error of 0.9844 inches of the starting configuration becomes 0.00367 inch by the end of the third optimization run

    Multiple Shaker Placement for Ground Vibration Test of X-59 Aircraft Using Topology Optimization

    Get PDF
    A multiple shaker placement methodology is developed and tested using a topology optimization technique. Current multiple shaker placement methodology requires optimum accelerometer placement and optimum single-shaker placement techniques. The proposed methodology is tested using a finite element model of the X-59 Low Boom Flight Demonstrator aircraft. The effective independence and the driving point acceleration transfer function (DPATF) methods are used for the accelerometer placement study. In this study, four shakers are used to excite each mode more effectively during the ground vibration test; all the modes of interest thus are separated into four groups. Each shaker takes care of a separate group of modes. Grouping the modes of interest is performed utilizing topology optimization. The number of modes for each group therefore will be automatically decided during grouping. For each group of modes, perform the following two steps to determine optimal location of four shakers: 1) At each accelerometer location, compare the magnitude of DPATF values at natural frequencies, select the minimum value, and make a vector with these minimum values of the DPATF magnitudes for each group; and 2) Select the degrees of freedom corresponding to the maximum value of this vector. The objective function value is the maximum value of the vector with minimum value of the magnitude of the superposed acceleration transfer function. This objective function value is maximized by changing the modes for each group. Forty accelerometers are enough to have good correlation between mode shapes obtained from the reduced order model and the simulated ground vibration test

    Multidisciplinary Design, Analysis, and Optimization Tool Development using a Genetic Algorithm

    Get PDF
    Multidisciplinary design, analysis, and optimization using a genetic algorithm is being developed at the National Aeronautics and Space A dministration Dryden Flight Research Center to automate analysis and design process by leveraging existing tools such as NASTRAN, ZAERO a nd CFD codes to enable true multidisciplinary optimization in the pr eliminary design stage of subsonic, transonic, supersonic, and hypers onic aircraft. This is a promising technology, but faces many challe nges in large-scale, real-world application. This paper describes cur rent approaches, recent results, and challenges for MDAO as demonstr ated by our experience with the Ikhana fire pod design
    corecore