

NASA/TM—2011–216419

Preliminary Development of an
Object-Oriented Optimization Tool

Chan-gi Pak

Dryden Flight Research Center, Edwards, California

January 2011

https://ntrs.nasa.gov/search.jsp?R=20110011616 2019-08-30T15:34:13+00:00Z

NASA STI Program ... in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA scientific and technical
information (STI) program plays a key part in
helping NASA maintain this important role.

The NASA STI program operates under the
auspices of the Agency Chief Information
Officer. It collects, organizes, provides for
archiving, and disseminates NASA’s STI. The
NASA STI program provides access to the
NASA Aeronautics and Space Database and its
public interface, the NASA Technical Report
Server, thus providing one of the largest
collections of aeronautical and space science
STI in the world. Results are published in both
non-NASA channels and by NASA in the
NASA STI Report Series, which includes the
following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant
phase of research that present the results of
NASA Programs and include extensive data
or theoretical analysis. Includes compila-
tions of significant scientific and technical
data and information deemed to be of
continuing reference value. NASA counter-
part of peer-reviewed formal professional
papers but has less stringent limitations on
manuscript length and extent of graphic
presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia,
seminars, or other meetings sponsored
or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and feeds,
providing help desk and personal search
support, and enabling data exchange services.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page

at http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA STI Help
Desk at 443-757-5803

• Phone the NASA STI Help Desk at
443-757-5802

• Write to:
NASA STI Help Desk
NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320

This page is required and contains approved text that cannot be changed.

NASA/TM—2011–216419

Preliminary Development of an
Object-Oriented Optimization Tool

Chan-gi Pak

Dryden Flight Research Center, Edwards, California

National Aeronautics and
Space Administration

Dryden Flight Research Center
Edwards, CA 93523-0273

January 2011

NOTICE

Use of trade names or names of manufacturers in this document does not constitute an official
endorsement of such products or manufacturers, either expressed or implied, by the National
Aeronautics and Space Administration.

Available from:

NASA Center for AeroSpace Information

7115 Standard Drive
Hanover, MD 21076-1320

443-757-5802

 1

Abstract
The National Aeronautics and Space Administration Dryden Flight Research Center has developed a

FORTRAN-based object-oriented optimization (O3) tool that leverages existing tools and practices and
allows easy integration and adoption of new state-of-the-art software. The object-oriented framework can
integrate the analysis codes for multiple disciplines, as opposed to relying on one code to perform
analysis for all disciplines. Optimization can thus take place within each discipline module, or in a loop
between the central executive module and the discipline modules, or both. Six sample optimization
problems are presented. The first four sample problems are based on simple mathematical equations; the
fifth and sixth problems consider a three-bar truss, which is a classical example in structural synthesis.
Instructions for preparing input data for the O3 tool are presented.

Nomenclature

AIC aerodynamic influence coefficient
BFGS Broyden–Fletcher–Goldfarb–Shanno
CDV continuous design variables
CEM central executive module
CG center of gravity
DC gradient-based algorithm with continuous design variable
DDV discrete design variables
DFRC Dryden Flight Research Center
DOT design optimization tool
G constraint functions
GA genetic algorithm
GC genetic algorithm with continuous design variables
GD genetic algorithm with discrete design variables
i #i: name of discipline module i
j #j: name of discipline module j
J performance index
k #k: name of discipline module k
NASA National Aeronautics and Space Administration
O3 object-oriented optimization tool

 applied external load

 applied external load
 x design variable

 design variable #1

 design variable #2

 design variable #3
{X} vector of design variables

Introduction
New methodologies, technologies, and design concepts facilitate the design of advanced aircraft with

improved performance as well as reduced operating costs and weight. The aerospace industry has
historically focused on developing aircraft that have multifunctional mission capabilities and expanded
flight envelopes, while at the same time attempting to reduce manufacturing costs as well as the weight of

 2

the airframe. More recently, environmental concerns impose further design constraints: aircraft designers
should now design for reductions in cabin and engine exhaust noise, sonic booms, and NOx emissions, as
well as improved fuel efficiency. These complicated requirements and constraints demand
multidisciplinary consideration for successful advanced aircraft design.

Supporting the Aeronautics Research Mission Directorate (ARMD) guidelines, the National
Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC) has developed an
object-oriented optimization (O3) tool. The tool leverages existing tools and practices and allows easy
integration and adoption of new state-of-the-art software. A computer code for finite element (FE) model
tuning (refs. 1, 2) has been developed using the O3 tool together with MSC/NASTRAN (MSC.Software
Corporation, Santa Ana, California), a computer software program. The primary objective of this model
tuning code is to obtain a ground-vibration-test-validated structural dynamics FE model that can provide a
reliable flutter analysis to define the flutter placard speed to which an aircraft can be flown prior to flight
flutter testing (ref. 3).

Optimization has made its way into many mainstream applications. For example, MSC/NASTRAN
has developed solution sequence 200 for design optimization (ref. 4), and MATLAB (The MathWorks,
Natick, Massachusetts) has developed an optimization toolbox (ref. 5). Other applications, such as
ZAERO (ZONA Technology Inc., Scottsdale, Arizona) aeroelastic panel code (ref. 6) and CFL3D
Navier-Stokes solver (ref. 7) do not include a built-in optimizer.

Most commercially available multidisciplinary design, analysis, and optimization (MDAO) tools have
been developed to perform within limited disciplines with a single-fidelity modeling capability. These
tools are typically developed as a single large software application that performs analysis for all
disciplines but has little or no capability to integrate multi-fidelity and multidisciplinary components that
have already been developed as stand-alone analysis codes. Although a multitude of tools have been
developed and are well-adapted to interdisciplinary aircraft design and analysis, they have not been
developed to work together.

The primary and long-term objective of the development of the O3 tool is to generate a “central
executive” capable of using disparate software packages in a cross-platform network environment so as to
quickly perform optimization and design tasks in a cohesive and streamlined manner. This object-oriented
framework can integrate the analysis codes for multiple disciplines, as opposed to relying on one code to
perform analysis for all disciplines. Optimization can thus take place within each discipline module, or in
a loop between the executive and the discipline modules, or both. Figure 1 shows a typical set of
discipline modules and their relation to the central executive.

 3

Figure 1. The object-oriented optimization tool.

Background
At the heart of the O3 tool is the central executive module (CEM), shown in figure 1. The CEM was

written in FORTRAN. The script commands for each performance index were submitted through the use
of the FORTRAN “call system” command, as shown in appendix A. In this CEM, the user will choose an
optimization methodology and define the objective and constraint functions from performance indices.
The user will also provide starting and side constraints for continuous as well as discrete design variables
and external file names for performance indices that communicate between the CEM and each analysis
module. The performance indices can be total weight, safety factors, frequencies, lift, drag, noise level,
flutter speed, gain and phase margin, et cetera.

Two optimizer software types are included in the O3 tool: design optimization tools (DOTs) (ref. 8)
based on a gradient-based algorithm; and the genetic algorithm (GA) (ref. 9). DOT is a commercial
optimization code that can be used to solve a wide variety of nonlinear optimization problems. When the
optimizer requires the values of the objective and constraint functions corresponding to a proposed
design, it returns control to the user’s program. The user’s program calls the optimizer again to obtain the
next design point; this process is repeated until the optimizer returns a parameter to indicate that the
optimum objective function is reached.

The GA does not require gradient calculations and can be started with random seeds, eliminating
some of the need for user input and allowing for solutions that may not be readily apparent even to
experienced designers (ref. 10). In the case of multiple local minima problems, GAs are able to find the
global optimum results, while gradient-based algorithms may converge to the local optimum value.

Different types of optimization methodology are available by using two different optimizer and
continuous as well as discrete design variables. Optimizers include:

• GA with continuous design variables (GC) or discrete design variables (GD)
• a gradient-based algorithm, that is, DOT, with a continuous design variable (DC)
• GC before DOT to perform the global optimization with DOT (GC + DC)

 4

• GD after DOT to convert continuous design variables to discrete design variables
(GC + DC + GD and DC + GD).

Additional optimizer software can be added to this module in the future if needed.
Each discipline module consists of three sub-modules: the pre-processor, analyzer, and post-processor

modules. The pre-processor module is used to create and update input files based on the design variable
values provided by the CEM before executing the analyzer module. The analyzer module can be a
commercial or an in-house code for a specific discipline. Multi-fidelity analyzer modules can be
incorporated within the current CEM environment. The script command will execute the analyzer module
automatically. Users can use a script file to execute a series of analyses in sequential order. The post-
processor module is used to post-process the output file, computed from the analyzer module, and to
automatically compute the performance indices.

Applications
Detailed instructions for preparing the O3 data input cards DESVAR, DOPTPRM, and INDEX, are

explained in appendix B. Free sequence of these input data cards is used in the O3 tool. The information
in the following lists will be provided by each input command.

DESVAR cards for each design variable:
• continuous versus discrete design variable
• starting value
• lower and upper limit of design variable
• name of table for a discrete design variable.
DOPTPRM card:
• optimization methodology
• control variables for optimizer routines GA and DOT.
INDEX cards for each performance index:
• objective function versus constraint function
• scaling factor in case of objective function
• small allowable value in case of equality as well as inequality constraints
• user-supplied gradient or not
• name of script file for the performance index (interface variable)
• name of output file where the performance index is saved
• name of script file for the gradient of the performance index (when user-supplied)
• name of output file where the gradient of the performance index is saved (when user-supplied).
Six sample problems are now presented to demonstrate the code. The first four sample problems are

based on simple mathematical equations and show the basic concept used in the current O3 tool. The fifth
and sixth problems involve a three-bar truss, which is a classical example in structural synthesis.

Sample Problem 1: Mathematical Equation Without User-Supplied Gradients

Consider the following optimization problem statements, equations (1) and (2):

 Minimize: f x() = x2 − 2x + 3 (1)

 Subject to: g x() = −x2 + 3x −1≤ 0 (2)

 5

From the inequality constraint given in equation (2), the feasible domain for the design variable

will be or . Therefore, the global minimum of the objective function f is at

 as shown in figure 2, and the corresponding f value is

f
3− 5

2

⎛

⎝
⎜

⎞

⎠
⎟ =

3− 5
2

⎛

⎝
⎜

⎞

⎠
⎟

2

− 2
3− 5

2

⎛

⎝
⎜

⎞

⎠
⎟ + 3=

9 + 5− 6 5
4

− 3+ 5 + 3=
14
4
−

3
2
−1

⎛
⎝⎜

⎞
⎠⎟

5

=
7
2
−

5
2

=
7 − 5

2
= 2.3820

Figure 2. The f and g curves for sample problem 1.

In this problem, the local minimum of the objective function f is at , the open circle in

figure 2. The corresponding f value is

f
3+ 5

2

⎛

⎝
⎜

⎞

⎠
⎟ =

3+ 5
2

⎛

⎝
⎜

⎞

⎠
⎟

2

− 2
3+ 5

2

⎛

⎝
⎜

⎞

⎠
⎟ + 3=

9 + 5+ 6 5
4

− 3+ 5 + 3=
14
4
+

3
2
−1

⎛
⎝⎜

⎞
⎠⎟

5

=
7
2
+

5
2

=
7 + 5

2
= 4.6180

These analytical results are summarized in table 1.

 6

Table 1. Results from sample problem 1.

Minimum Initial x Optimum x Objective
function f

Constraint
function g

Number of
function calls

Exact global N/A

0 N/A

Exact local N/A

0 N/A

DOT 0.1 0.38197 2.3820 6.2173E-15 8
DOT 4.0 2.6180 4.6180 -1.15463E-14 8
GA 0.1 0.38192 2.3820 1000
GA 4.0 0.38192 2.3820 1000

For the computer simulation with the O3 tool, the gradient-based search, DOT, with a starting value of

0.1, is selected; these results are also given in table 1. Input data cards for this simulation are as follows:

DOPTPRM IOPT2 2 ICAS 0 MAXDOT 1
+ NRWK 1000 NRIWK 500 NGMAX 2
+ IGRAD 0 CT -0.00001 CTMIN 0.00001
DESVAR 1 0 0.1 0.0 2.0
INDEX 1 1 0 1.0 0
+ Sample problem 1: Object function
+ f
+ f.dat
INDEX 2 0 1 0.0 0
+ Sample problem 1: Constraint function
+ g
+ g.dat

The script files f.bat and g.bat, FORTRAN source codes for executable files obj.exe and const.exe,

and external files for performance indices f.dat and g.dat are given in appendix C, section C.1. An
external file, design_variables, represented in figure 3, for the O3 tool cannot be shared with the other
executable codes obj.exe and const.exe, therefore, a copy of the external file, design_var, is created in the
script file f.bat given in appendix C, section C.1.1. In the first script file, f.bat, the obj command in the
second line will execute computations of the function f found in equation (1). The corresponding
FORTRAN program is provided in appendix C, section C.1.3. The performance index f is saved in the
external file f.dat, as shown in this FORTRAN program. In the second script file, g.bat, the const
command will execute computations of the function g found in equation (2). The FORTRAN source code
is given in appendix C, section C.1.4. In this case, the performance index g will be saved in the external
file g.dat. Based on these two performance indices, f and g, the objective function and the constraint
function will be computed as shown in appendix A.

 7

Figure 3. The problem structure of sample problem 1.

The results from this simulation are shown in table 1. Note from this table that DOT optimizer
converges to the exact global minimum value. The starting x value of 0.1 converges to the optimum value
of 0.38197 within eight optimization iterations.

Another DOT simulation with a starting x value of 4.0 is also performed; the corresponding
DESVAR card for this simulation is as follows:

DESVAR 1 0 4.0 -1.0 4.0

All of the other input data cards, DOPTPRM, and INDEX, are the same as those used above. Input

data for the second simulation are as follows:

DOPTPRM IOPT2 2 ICAS 0 MAXDOT 1
+ NRWK 1000 NRIWK 500 NGMAX 2
+ IGRAD 0 CT -0.00001 CTMIN 0.00001
DESVAR 1 0 4.0 -1.0 4.0
INDEX 1 1 0 1.0 0
+ Sample problem 1: Object function
+ f
+ f.dat
INDEX 2 0 1 0.0 0
+ Sample problem 1: Constraint function
+ g
+ g.dat

 8

In this second DOT simulation, the local minimum value of 2.618 is obtained as shown in table 1; this
is the limitation of the gradient-based optimizer, which cannot overcome the difficulties with
discontinuous design space.

The GA optimizer is selected for the third numerical simulation; the input data cards, with starting x
value of 0.1, are given as:

DOPTPRM IOPT2 1 IPOP 100 IGEN 10
DESVAR 1 0 0.1 0.0 2.0
INDEX 1 1 0 1.0 0
+ Sample problem 1: Object function
+ f
+ f.dat
INDEX 2 0 1 0.0 0
+ Sample problem 1: Constraint function
+ g
+ g.dat

Two different starting values of x, 0.1 and 4.0, are used in this simulation, and these results are also

given in table 1. In the case of the GA optimizer, it always converges to the global minimum value; this is
the major benefit of using the global optimizer, such as the GA optimizer. The optimization iteration of
1000 (=IPOP x IGEN) is, however, somewhat large compared to the gradient-based optimizers.

Sample Problem 2: Mathematical Equation With User-Supplied Gradients

Consider the same optimization problem statements given in sample problem 1, that is, equations (1)
and (2):

 Minimize: f x() = x2 − 2x + 3 (1)

 Subject to: g x() = −x2 + 3x −1≤ 0 (2)

with the following user-supplied “analytical” gradients:

df (x)
dx

= 2x − 2 (3)

 (4)

Input data cards for the DOT simulation are as follows:

DOPTPRM IOPT2 2 ICAS 0 MAXDOT 1
+ NRWK 1000 NRIWK 500 NGMAX 2
+ IGRAD 1 CT -0.00001 CTMIN 0.00001
DESVAR 1 0 0.1 0.0 2.0

 9

INDEX 1 1 0 1.0 1
+ Sample problem 2: Object function
+ f
+ f.dat
+ fdot
+ fdot.dat
INDEX 2 0 1 0.0 1
+ Sample problem 2: Constraint function
+ g
+ g.dat
+ gdot
+ gdot.dat

The basic structure of this optimization problem is shown in figure 4. The script files f.bat, fdot.bat,

g.bat, and gdot.bat; and the corresponding FORTRAN programs obj.f, obj_grad.f, const.f, and
const_grad.f are given in appendix C. The results from this simulation are summarized in table 2.

Figure 4. The problem structure of sample problem 2.

 10

Table 2. Results from sample problem 2.

 Initial

x Optimum x Objective
function f

Constraint
function g

Number of
function calls

Number of
gradient calls

Exact
global N/A 0 N/A N/A

DOT 0.1 0.38197 2.3820 6.2173E-15 6 2

The number of function calls are decreased from 8 to 6 with the user-supplied gradients approach as

shown in tables 1 and 2.

Sample Problem 3: Equality Constraint Without User-Supplied Gradients

Consider the following optimization problem statements with an equality constraint. Three design
variables are used in this sample problem.

Minimize: (5)

Subject to: (6)

The problem structure of this sample problem is given in figure 5. In this problem, performance
indices are f and h as shown in figure 5.

Figure 5. The problem structure of sample problem 3.

 11

The exact solution can be obtained as follows: Rewrite the equality constraint, equation (6), as shown
by equation (7):

 (7)

Substituting equation (7) into equation (5) gives equation (8):

 (8)

From equation (8), the minimum f is at equations (9) and (10):

∂f X2, X3()
∂X2

= −2 1− X2 − 3X3() + 2 X2 + X3() = 4X2 + 8X3 − 2 = 0 (9)

 (10)

From equations (9) and (10), and . Therefore, from equations (7) and (5),

and .
The exact solution as well as the DOT simulation results in ref. 8 are summarized in table 3.

Table 3. Results from sample problem 3.

Variable Exact
Results in reference 8

using two inequality constraints

DOT in this study
using Lagrange

multiplier
Design variable X1 0.5 .475 .501
Design variable X2 -0.5 -.469 -.500
Design variable X3 0.5 .488 .500
Objective function f 0 3.8e-4 1.4e-06
Constraint function g1 N/A 8.4e-5 N/A
Number of function calls N/A 43 43

In the O3 tool, an equality constraint h in equation (6) is added to the objective function using the

Lagrange multiplier as shown in equation (11):

f X1, X2, X3,λ() = f X1, X2, X3() + λh X1, X2, X3() (11)

Input data cards for sample problem 3 with an equality constraint are as follows:

DOPTPRM IOPT2 2 ICAS 0 MAXDOT 1
+ NRWK 1000 NRIWK 500 NGMAX 2
+ IGRAD 0
DESVAR 1 0 -4.0 -10.0 10.0

 12

DESVAR 2 0 1.0 -10.0 10.0
DESVAR 3 0 2.0 -10.0 10.0
INDEX 1 1 0 1.0 0
+ Sample problem 3: Object function
+ f
+ f.dat
INDEX 2 0 2 2.0 0
+ Sample problem 3: Equality constraint
+ h
+ h.dat

The Lagrange multiplier of 2.0 is used in this sample problem. The script files f.bat, h.bat, and other

required programs, obj.f and const.f, are given in appendix C, section C.3. The results from this
simulation are summarized in table 3. Note from this table that the DOT optimizer converges to the exact
solution.

The major difference between the DOT simulation in this study and that in ref. 8 is the method used
to handle the equality constraints. The Lagrange multiplier is used in this study, however, two inequality
constraints,

g1 = − X1 + 2X2 + 3X3 −1() ≤ ε

where, ε = a small number, are used to solve the problem with the equality constraint in reference 8.
Instead of solving equation (6), the following equation

is used in reference 8. It can be concluded from the results presented in table 3 that the results obtained
from using the Lagrange multiplier are much more accurate than those obtained by using two inequality
constraints. Accuracy and convergence of the optimization using two inequality constraints are strong
function of the small number . When is a large number, good convergence and bad accuracy can
result. On the other hand, when a very small number is selected for the value, good accuracy and bad
convergence can result, because the feasible domain for the design variables will be very narrow.

Sample Problem 4: Equality Constraint With User-Supplied Gradients

Recall the optimization problem statements in sample problem 3, that is, equations (5) and (6). The
problem structure of this sample problem with user-supplied gradients is presented in figure 6.

Minimize: (5)

Subject to: (6)

with the following user-supplied gradients:

 13

Figure 6. The problem structure of sample problem 4.

 14

Input data cards for sample problem 4 are as follows:

DOPTPRM IOPT2 2 ICAS 0 MAXDOT 1
+ NRWK 1000 NRIWK 500 NGMAX 2
+ IGRAD 1
DESVAR 1 0 -4.0 -10.0 10.0
DESVAR 2 0 1.0 -10.0 10.0
DESVAR 3 0 2.0 -10.0 10.0
INDEX 1 1 0 1.0 1
+ Sample problem 4: Object function
+ f
+ f.dat
+ fdot
+ fdot.dat
INDEX 2 0 2 2.0 1
+ Sample problem 4: Equality constraint
+ h
+ h.dat
+ hdot
+ hdot.dat

The script files f.bat, h.bat, fdot.bat, hdot.bat, and FORTRAN source codes, obj.f, obj_grad.f, const.f,

and const_grad.f, are given in appendix C, section C.4. The results from this simulation are summarized
in table 4.

Table 4. Results from sample problem 4.

Variable Exact DOT in this study
Design variable X1 0.5 .500
Design variable X2 -0.5 -.500
Design variable X3 0.5 .500
Objective function f 0 1.6e-27
Number of function calls N/A 16
Number of gradient calls N/A 5

Note from this table that DOT optimizer converges to the exact solution. The total number of function
calls, 43, in table 3, is reduced to 16, as shown in table 4, with improved accuracy. Better convergence
and accuracy are the major advantages of using the user-supplied gradients.

Sample Problem 5: Three-Bar Truss Without User-Supplied Gradients

The optimization of a three-bar truss problem, as shown in figure 7, is now discussed. In this
problem, the objective is to minimize the total volume of the structure.

 15

Figure 7. Three-bar truss load conditions.

In figure 7, the design variables X1 and X2 correspond to the cross-sectional areas of bar 1 and bar 2,
respectively. The area of bar 3 is “linked” to be the same as bar 1 for symmetry. The constraints are
tensile and compressive stress constraints in bar 1 and bar 2 under loading P1=20000. The loadings P1 and
P2 are applied separately. The optimization problem statement (ref. 8), in the standard form for
optimization, is given as:

Minimize:

Subject to: and where

 i = 1,2

The problem structure of this sample problem is presented in figure 8. Three performance indices are
used. The first performance index, f, is for the objective function, and the second and third performance
indices, g1 and g2, are for the inequality constraints.

 16

Figure 8. The problem structure of sample problem 5.

The input data cards for the three-bar truss problem are as follows:

DOPTPRM IOPT2 2 ICAS 0 MAXDOT 1
+ NRWK 1000 NRIWK 500 NGMAX 2
+ IGRAD 0
DESVAR 1 0 1.0 0.01 2.0
DESVAR 2 0 1.0 0.01 2.0
INDEX 1 1 0 1.0 0
+ Total weight: Based on analytical equation
+ f
+ f.dat
INDEX 2 0 1 0.0 0
+ First inequality constraint: Based on analytical equation
+ g1
+ g1.dat
INDEX 3 0 1 0.0 0
+ Second inequality constraint: Based on analytical equation
+ g2
+ g2.dat

The script files f.bat, g1.bat, and g2.bat, and FORTRAN source codes for executable files obj.exe,

con1.exe, and con2.exe, are given in appendix C, section C.5. The results from this computer simulation
are provided in table 5.

 17

Table 5. Results from sample problem 5.

Variable DOT in this study DOT in reference 8
Design variable X1 .799 .799
Design variable X2 .372 .372
Objective function f 2.633 2.633
Constraint function g1 2.8e-03 2.8e-3
Constraint function g2 -2.5e-01 -6.2e-1
Number of function calls 29 29

Note from this table that the design variables computed from DOT optimizer in this study converge to
those given in reference 8. Also note that the constraint value g2 at the optimum design is significantly
different; this is mainly because the constraint function g2 is quite “flat” near the optimum design.

Sample Problem 6: Three-Bar Truss With User-Supplied Gradients

Recall the optimization problem statements in sample problem 5,

Minimize:

Subject to: and where

 i = 1,2

with the following user-supplied gradients:

dg1 X1,X2()
dX1

=
2 2X1

2 + 2 2X1X2()− 2X1 + 2X2() 4X1 + 2 2X2()
2X1

2 + 2 2X1X2()2
=
−X1

2 − 2X1X2 + X2
2

X1
2 + 2X1X2()2

dg1 X1, X2()
dX2

=
2 2X1

2 + 2 2X1X2()− 2X1 + 2X2()2 2X1

2X1
2 + 2 2X1X2()2

=
−1

2 X1 + 2X2()2

 18

dg2 X1, X2()
dX1

=
−1

X1 + 2X2()2

dg2 X1, X2()
dX2

=
− 2

X1 + 2X2()2

The input data cards are as follows:

DOPTPRM IOPT2 2 ICAS 0 MAXDOT 1
+ NRWK 1000 NRIWK 500 NGMAX 2
+ IGRAD 1
DESVAR 1 0 1.0 0.1 2.0
DESVAR 2 0 1.0 0.1 2.0
INDEX 1 1 0 1.0 1
+ Total weight: Based on analytical equation
+ f
+ f.dat
+ fdot
+ fdot.dat
INDEX 2 0 1 0.0 1
+ First inequality constraint: Based on analytical equation
+ g1
+ g1.dat
+ g1dot
+ g1dot.dat
INDEX 3 0 1 0.0 1
+ Second inequality constraint: Based on analytical equation
+ g2
+ g2.dat
+ g2dot
+ g2dot.dat

The script files f.bat, fdot.bat, g1.bat, g1dot.bat, g2.bat, g2dot.bat, and other required programs are

given in appendix C, section C.6. The results from this simulation are provided in table 6. The total
number of function calls, 29, in table 5, is reduced to 23, as shown in table 6.

Two more sample applications of the O3 tool are shown in figures 9 and 10. Future work should
focus on developing an unsteady aerodynamic model tuning tool and an object-oriented MDAO tool.

 19

Table 6. Results from sample problem 6.

Variable DOT in this study
Design variable X1 .799
Design variable X2 .371
Objective function f 2.633
Constraint function g1 2.9e-03
Constraint function g2 -2.5e-01
Number of function calls 23
Number of gradient calls 3

Figure 9. The problem structure of unsteady aerodynamic model tuning.

 20

Figure 10. Sample performance indices for each discipline.

Conclusion
The NASA Dryden Flight Research Center FORTRAN-based object-oriented optimization (O3) tool

is developed and demonstrated. The feasibilities of O3 tool leveraging with other executable codes are
shown by way of simple mathematical equations that also enable understanding of the basic concept of
the O3 tool. The results demonstrate the flexibility of the O3 tool for optimization problems and indicate
the ease of implementation of the tool for engineering problems such as structural model tuning; unsteady
aerodynamic model tuning; multidisciplinary design, analysis, and optimization; and other optimization
problems using commercial codes, in-house executable codes, or both. Sample performance indices for
the development of a multidisciplinary design, analysis, and optimization tool are presented.

 21

Appendix A
This appendix presents instructions for preparing the input data for the object-oriented optimization

(O3) tool. Further discussion is given in the “Background” section in the body of the report.

subroutine objfun(obj,g,ndv,nintv,intobj,intcon,facobj,eps,icas,script_name,output_name,fintv)
implicit real*8(a-h,o-z)
dimension intobj(*),intcon(*),facobj(*)
character*70 script_name(*),output_name(*)
dimension g(*),fintv(*)
obj=0.0
ii=0
do i=1,nintv : nintv (number of performance indices)
 call system(script_name(i)) : Script commands are executed
c
c objective function
c
 if(intobj(i).ge.1.and.intobj(i).le.3) then
 open(99,file=output_name(i)) : open external file for each performance index
 read(99,*) objtmp : read each performance index
 close(99)
 fintv(i)=objtmp : save performance index for post-processing
 if(intobj(i).eq.1) obj=obj+objtmp*facobj(i) : facobj(i) = weighting factors
 if(intobj(i).eq.2) obj=obj+objtmp**2*facobj(i)
 if(intobj(i).eq.3) obj=obj+dabs(objtmp)*facobj(i)
 endif
c
c inequality constraints
c
 if(intcon(i).eq.1) then
 open(99,file=output_name(i)) : open external file for each performance index
 read(99,*) const : read each performance index
 close(99)
 fintv(i)=const : save performance index for post-processing
 ii=ii+1
 g(ii)=const-facobj(i) : facobj(i) = small epsilon values for inequality constraints
 endif
c
c equality constraints; use Lagrange multiplier
c
 if(intcon(i).eq.2) then
 open(99,file=output_name(i)) : open external file for each performance index
 read(99,*) const : read each performance index
 close(99)
 fintv(i)=const : save performance index for post-processing
 obj=obj+facobj(i)*const**2 : facobj(i) = Lagrange multipliers
 endif
enddo
if(icas.eq.1) obj=-obj : change sign for switching between min and max problems
return
end

 22

Appendix B
This appendix presents and explains the input data cards used for the object-oriented optimization

(O3) tool. The appendix expands on the discussion found in the “Applications” section in the body of the
report.

B.1. DESVAR

DESVAR: Defines a design variable for design optimization.

Format:
1 2 3 4 5 6 7
DESVAR ID IOPT XSTART XL XU TABLE

Example:
1 2 3 4 5 6 7
DESVAR 2 0 3.5+3 1.0-5 1.0+4

1 2 3 4 5 6 7
DESVAR 101 1 2.0 0.0 5.0 ddv-01.dat

Field:

DESVAR (A10)
ID (I5) Unique design variable identification number (integer > 0)

IOPT (I5) = 0: Continuous design variable
 = 1: Discrete design variable

XSTART (F20.5) Initial starting value (real, XL XSTART XU)

XL (F10.5) Lower bound of design variable (real, default = -1.e+20)

XU (F10.5) Upper bound of design variable (real, default = 1.e+20)

TABLE (A20) Name of table for a discrete design variable (remark 1)

Remark:

1. The following data should be prepared for each discrete design variable table:

 cdv(L), cdv(U), fix (prepare one line for each domain; 3 free format)
 cdv(L): lower bound of continuous value
 cdv(U): upper bound of continuous value
 fix: fixed value within this domain

 23

ex 1) if and then
 cdv(L)=2.5 cdv(U)=3.5 fix=3.0
 cdv(L)=3.5 cdv(U)=4.5 fix=4.0

 ex 2) if and then
 cdv(L)=2.0 cdv(U)=3.0 fix=2.0
 cdv(L)=3.0 cdv(U)=4.0 fix=3.0

B.2. DOPTPRM

 DOPTPRM: Override default values of parameters used in design.

Format:
1 2 3 4 5 6 7
DOPTPRM PAR1 VAL1 PAR2 VAL2 PAR3 VAL3
+ PAR4 VAL4 -etc.-

Example:
1 2 3 4 5 6 7

DOPTPRM IOPT2 2 ICAS 0 MAXDOT 1
+ NRWK 1000 NRIWK 500 NGMAX 2
+ IGRAD 0

Field:

DOPTPRM (A10)

PARi (A10) Name of the design optimization parameter. Allowable names are given in

tables B.1, B.2, B.3, and B.4 (character).

VALi (I10 or F10.5) Value of the parameter (real or integer, see tables B.1, B.2, B.3, and B.4).

Remark:

Only one DOPTPRM entry is allowed in the Bulk Data Section.

 24

Table B.1. PARi names and descriptions for general input.

Name Description, type, and default value
ICAS Flag for minimization or maximization (default = 0)
 = 0: minimization
 = 1: maximization
IOPT2 Optimization methodology in Central Executive Module (default = 0)

 Continuous design variables (CDV)
 Discrete design variables (DDV)

 = 0: Exit
 = 1: GA(CDV or DDV)
 = 2: DOT(CDV)
 = 3: GA(CDV) + DOT(CDV)
 = 4: GA(CDV) + DOT(CDV) + GA(DDV)
 = 5: DOT(CDV) + GA(DDV)

Table B.2. PARi names and descriptions for the genetic algorithm.

Name Description, type, and default value
IGEN Number of generations (default = 2)
IPOP Number of populations (default = 3)

Table B.3. PARi names and descriptions for design optimization tools (integers).

Name Description, type, and default value
IGMAX If IGMAX=0, only gradients of active and violated constraints are

calculated. If IGMAX>0, up to NGMAX gradients are calculated,
including active, violated, and near active constraints (default = 0).

IGRAD Specifies whether the gradients are calculated (default = 0)

= -1 or 0: by DOT
= 1: by user

IPRINT Print control parameter (default = 3)

= 0 no output
= 1 internal parameters, initial information, and results
= 2 same plus objective function and X vector at each iteration
= 3 same plus G-vector and critical constraint numbers
= 4 same plus gradients
= 5 same plus search direction
= 6 same plus set IPRNT1=1 and IPRNT2=1
= 7 same except set IPRNT2=2

IPRNT1 If IPRNT1=1, print scaling factors for the X vector (default = 0)

 25

IPRNT2 If IPRNT2=1, print miscellaneous search information. If IPRNT2=2, turn

on print during one-dimensional search process. This is for debugging
only (default = 0).

ISCAL Design variables are rescaled every ISCAL iteration

Set ISCAL = -1 to turn off scaling (default = number of design variable).

ITMAX Maximum number of iterations allowed at optimizer level during each

design cycle (default = 100)

ITRMOP Number of consecutive iterations for which convergence criteria must be

satisfied to indicate convergence at the optimizer level
(integer; default = 2)

ITRMST Number of consecutive iterations for which convergence criteria must be

met at the optimizer level to indicate convergence in the sequential linear
programming method (integer > 0; default = 2)

JPRINT Sequential linear programming and sequential quadratic programming

subproblem print. If JPRINT>0, IPRINT is turned on during approximate
subproblem. This is for debugging only (default = 0).

JTMAX Maximum number of iterations allowed at the optimizer level for the

sequential linear programming method. This is the number of linearized
subproblems solved (integer 0; default = 50).

JWRITE File number to which to write iteration history information. This is useful

for using post-processing programs to plot the iteration process. This is
only used if JWRITE>0 (default = 0).

MAXDOT Maximum number of DOT optimizations (default = 1)

MAXINT Maximum integer number that can be defined (default = 2000000000)

METHOD Optimization method: (integer 0, 1, 2, or 3; default = 1)

0 or 1: Modified method of feasible directions (default)
2: Sequential linear programming
3: Sequential quadratic programming
If the problem is unconstrained (NCON=0), the BFGS algorithm will be
used if METHOD=0 or 1; the Fletcher-Reeves algorithm will be used if
METHOD=2.
NCON = number of constraints (automatically counted)

NGMAX Number of retained constraints used for METHOD=2 or 3.

Also, the maximum number of constraints retained for gradient
calculations when METHOD=1 (default = NCON, but not more than
2 * NDV)
NDV = number of design variables (automatically counted)

 26

NRIWK Dimensioned size of work array IWK. A good estimate is 300 for a small
problem. Increase the size of NRIWK as the problem grows larger. If
NRIWK is too small, an error message will be printed and the
optimization will be terminated (default = 300).

NRWK Dimensioned size of work array WK. NRWK should be set quite large,

starting at about 1000 for a small problem. If NRWK has been given too
small a value, an error message will be printed and the optimization will
be terminated
(default = 1000).

Table B.4. PARi names and descriptions for design optimization tools (real numbers).

Name Description, type, and default value
CT A constraint is active if its numerical value is more positive than CT. CT is

a small negative number (default = -0.03).

CTMIN A constraint is violated if its numerical value is more positive than

CTMIN (default = 0.003).

DABOBJ Maximum absolute change in the objective between ITRMOP consecutive

iterations to indicate convergence in optimization
(default = MAX[0.0001*ABS(F0),1.e-20])

DABSTR Maximum absolute change in the objective between ITRMST consecutive

iterations of sequential linear programming and sequential quadratic
programming methods to indicate convergence to the optimum
(default = 0.003)

DELOBJ Maximum relative change in the objective between ITRMOP consecutive

iterations to indicate convergence in optimization (default = 0.001)

DELSTR Maximum relative change in the objective between ITRMST consecutive

iterations of sequential linear programming method to indicate
convergence to the optimum (default = 0.001)

DOBJ1 Relative change in the objective function attempted on the first

optimization iteration. Used to estimate initial move in the
one-dimensional search. Updated as the optimization progresses
(default = 0.1).

DOBJ2 Absolute change in the objective function attempted on the first

optimization iteration [default = 0.2*ABS(F0)]

DX1 Maximum relative change in a design variable attempted on the first

optimization iteration. Used to estimate the initial move in the
one-dimensional search. Updated as the optimization progresses
(default = 0.01).

 27

DX2 Maximum absolute change in a design variable attempted on the first

optimization iteration. Used to estimate the initial move in the
one-dimensional search. Updated as the optimization progresses
(default = 0.2*ABS[x(l)])

FDCH Relative finite difference step when calculating gradients (default = 0.001)

FDCHM Minimum absolute value of the finite difference step when calculating

gradients. This prevents too small a step when X(l) is near zero
(default = 0.0001).

RMVLMZ Maximum relative change in design variables during the first approximate

subproblem in the sequential linear programming method. That is, each
design variable is initially allowed to change by +- 40%. This move limit
is reduced as the optimization progresses (default = 0.4).

B.3 Index

 INDEX: Prepare INDEX cards for each performance index. Object and constraint functions will be
defined from performance indices.

Format:

1 2 3 4 5 6
INDEX ID INTOBJ INTCON FACOBJ INTGRA
+ TASK
+ SCRIPT
+ OUTPUT
+ SCRIPT_GRAD (needed when INTGRA=1)
+ OUTPUT_GRAD (needed when INTGRA=1)

Example:

INDEX 1 1 0 1.0 0
+ Total weight: Based on analytical equation
+ f
+ f.dat
INDEX 2 0 1 0.0 0
+ First inequality constraint: Based on analytical equation
+ g1
+ g1.dat
INDEX 3 0 1 0.0 0
+ Second inequality constraint: Based on analytical equation
+ g2
+ g2.dat

 28

INDEX 1 1 0 1.0 1
+ Total weight: Based on analytical equation
+ f
+ f.dat
+ fdot
+ fdot.dat
INDEX 2 0 1 0.0 1
+ First inequality constraint: Based on analytical equation
+ g1
+ g1.dat
+ g1dot
+ g1dot.dat
INDEX 3 0 1 0.0 1
+ Second inequality constraint: Based on analytical equation
+ g2
+ g2.dat
+ g2dot
+ g2dot.dat

Field:

ID (I10) Unique integer variable identification number (integer>0)

INTOBJ (I10) Part of objective function? Yes then 1, 2, or 3; No then 0
 1: linear obj(i)
 2: quadratic obj(i)**2
 3: absolute |obj(i)|
 ex) obj= a1*obj(1) + a2*obj(2)**2 + a3*|obj(3)| + ...

INTCON (I10) Part of constraints? Yes then 1 or 2; No then 0
 1: inequality constraint
 2: equality constraint

FACOBJ (F10.5) Scaling factor for objective function (real, default=1.0)
 a1, a2, ... (scaling factors)
 ex) obj= a1*obj(1) + a2*obj(2) + ...
 or epsilon for constraints
 g(i) <= facobj(i) for inequality constraints
 Lagrange multiplier for equality constraints

INTGRA (I10) User-supplied gradients? Yes then 1; No then 0

TASK (A70) Task description

SCRIPT (A70) Name of script file for this performance index

 29

OUTPUT (A70) Name for output file where the performance indices are saved.
 write(unit,*) performance index
 format(real; double precision; free format)

SCRIPT_GRAD (A70) Name of script file for analytical gradient computations

OUTPUT_GRAD (A70) Name for output file where gradient of performance index with respect to
 design variables are saved.
 write(unit,*) ndv
 format(integer; double precision; free format)
 write(unit,*) (dx(i),i=1,ndv)
 format(real; double precision; free format)
 where, ndv=number of design variable
 dx(i)=gradients

 30

Appendix C
This appendix contains script files and analysis computer programs used for the six sample problems

discussed in the body of the report. A detailed discussion is provided in the “Applications” section above.

C.1. Sample Problem 1

C.1.1. f.bat
copy design_variables design_var
obj

C.1.2. g.bat
const

C.1.3. obj.f

 implicit real*8(a-h,o-z)
 open(1,file='design_var')
 open(2,file='f.dat')
 read(1,*) dum,x
 y=x**2-2.*x+3.
 write(2,*) y
 stop
 end

C.1.4. const.f
 implicit real*8(a-h,o-z)
 open(1,file='design_var')
 open(2,file='g.dat')
 read(1,*) dum,x
 y=-x**2+3.*x-1.
 write(2,*) y
 stop
 end

C.2. Sample Problem 2

C.2.1. f.bat
copy design_variables design_var
obj

C.2.2. fdot.bat
obj_grad

C.2.3. g.bat
const

 31

C.2.4. gdot.bat
const_grad

C.2.5. obj.f
 implicit real*8(a-h,o-z)
 open(1,file='design_var')
 open(2,file='f.dat')
 read(1,*) dum,x
 y=x**2-2.*x+3.
 write(2,*) y
 stop
 end

C.2.6. obj_grad.f
 implicit real*8(a-h,o-z)
 open(1,file='design_var')
 open(2,file='fdot.dat')
 read(1,*) dum,x
 y=2.*x-2.
 n=1
 write(2,*) n
 write(2,*) y
 stop
 end

C.2.7. const.f
 implicit real*8(a-h,o-z)
 open(1,file='design_var')
 open(2,file='g.dat')
 read(1,*) dum,x
 y=-x**2+3.*x-1.
 write(2,*) y
 stop
 end

C.2.8. const_grad.f
 implicit real*8(a-h,o-z)
 open(1,file='design_var')
 open(2,file='gdot.dat')
 read(1,*) dum,x
 y=-2.*x+3.
 n=1
 write(2,*) n
 write(2,*) y
 stop
 end

 32

C.3. Sample Problem 3

C.3.1. f.bat
copy design_variables design_var
obj

C.3.2. h.bat
const

C.3.3. obj.f
 implicit real*8(a-h,o-z)
 open(1,file='design_var')
 open(2,file='f.dat')
 read(1,*) dum,x1
 read(1,*) dum,x2
 read(1,*) dum,x3
 y=(x1+x2)**2+(x2+x3)**2
 write(2,*) y
 stop
 end

C.3.4. const.f
 implicit real*8(a-h,o-z)
 open(1,file='design_var')
 open(2,file='h.dat')
 read(1,*) dum,x1
 read(1,*) dum,x2
 read(1,*) dum,x3
 h=x1+2*x2+3*x3-1.
 write(2,*) h
 stop
 end

C.4. Sample Problem 4

C.4.1. f.bat
copy design_variables design_var
obj

C.4.2. fdot.bat
obj_grad

C.4.3. h.bat
const

C.4.4. hdot.bat
con_grad

 33

C.4.5. obj.f
 implicit real*8(a-h,o-z)
 open(1,file='design_var')
 open(2,file='f.dat')
 read(1,*) dum,x1
 read(1,*) dum,x2
 read(1,*) dum,x3
 y=(x1+x2)**2+(x2+x3)**2
 write(2,*) y
 stop
 end

C.4.6. obj_grad.f
 implicit real*8(a-h,o-z)
 dimension ydot(3)
 open(1,file='design_var')
 open(2,file='fdot.dat')
 read(1,*) dum,x1
 read(1,*) dum,x2
 read(1,*) dum,x3
 n=3
 ydot(1)=2.*(x1+x2)
 ydot(2)=2.*(x1+x2)+2.*(x2+x3)
 ydot(3)=2.*(x2+x3)
 write(2,*) n
 write(2,*) (ydot(i),i=1,n)
 stop
 end

C.4.7. const.f
 implicit real*8(a-h,o-z)
 open(1,file='design_var')
 open(2,file='h.dat')
 read(1,*) dum,x1
 read(1,*) dum,x2
 read(1,*) dum,x3
 h=x1+2*x2+3*x3-1.
 write(2,*) h
 stop
 end

 34

C.4.8. con_grad.f
 implicit real*8(a-h,o-z)
 dimension ydot(3)
 open(1,file='design_var')
 open(2,file='hdot.dat')
 read(1,*) dum,x1
 read(1,*) dum,x2
 read(1,*) dum,x3
 n=3
 ydot(1)=1.
 ydot(2)=2.
 ydot(3)=3.
 write(2,*) n
 write(2,*) (ydot(i),i=1,n)
 stop
 end

C.5. Sample Problem 5

C.5.1. f.bat
copy design_variables design_var
obj

C.5.2. g1.bat
con1

C.5.3. g2.bat
con2

C.5.4. obj.f
 implicit real*8(a-h,o-z)
 open(1,file='design_var')
 open(2,file='f.dat')
 read(1,*) dum,x1
 read(1,*) dum,x2
 y=2.*sqrt(2.)*x1+x2
 write(2,*) y
 stop
 end

 35

C.5.5. con1.f
 implicit real*8(a-h,o-z)
 open(1,file='design_var')
 open(2,file='g1.dat')
 read(1,*) dum,x1
 read(1,*) dum,x2
 g1=(2.*x1+sqrt(2.)*x2)/(2.*x1*(x1+sqrt(2.)*x2))-1.
 write(2,*) g1
 stop
 end

C.5.6. con2.f
 implicit real*8(a-h,o-z)
 open(1,file='design_var')
 open(3,file='g2.dat')
 read(1,*) dum,x1
 read(1,*) dum,x2
 g2=1./(x1+sqrt(2.)*x2)-1.
 write(3,*) g2
 stop
 end

C.6. Sample Problem 6

C.6.1. f.bat
copy design_variables design_var
obj

C.6.2. fdot.bat
obj_grad

C.6.3. g1.bat
constraints

C.6.4. g1dot.bat
con1_grad

C.6.5. g2.bat
(empty)

C.6.6. g2dot.bat
con2_grad

 36

C.6.7. obj.f
 implicit real*8(a-h,o-z)
 open(1,file='design_var')
 open(2,file='f.dat')
 read(1,*) dum,x1
 read(1,*) dum,x2
 y=2.*sqrt(2.)*x1+x2
 write(2,*) y
 stop
 end

C.6.8. obj_grad.f
 implicit real*8(a-h,o-z)
 dimension ydot(2)
 open(1,file='design_var')
 open(2,file='fdot.dat')
 read(1,*) dum,x1
 read(1,*) dum,x2
 n=2
 ydot(1)=2.*sqrt(2.)
 ydot(2)=1.
 write(2,*) n
 write(2,*) (ydot(i),i=1,n)
 stop
 end

C.6.9. constraints.f
 implicit real*8(a-h,o-z)
 open(1,file='design_var')
 open(2,file='g1.dat')
 open(3,file='g2.dat')
 read(1,*) dum,x1
 read(1,*) dum,x2
 g1=(2.*x1+sqrt(2.)*x2)/(2.*x1*(x1+sqrt(2.)*x2))-1.
 g2=1./(x1+sqrt(2.)*x2)-1.
 write(2,*) g1
 write(3,*) g2
 stop
 end

 37

C.6.10. con1_grad.f
 implicit real*8(a-h,o-z)
 dimension ydot(2)
 open(1,file='design_var')
 open(2,file='g1dot.dat')
 read(1,*) dum,x1
 read(1,*) dum,x2
 n=2
 d1=(x1+sqrt(2.)*x2)**2
 ydot(1)=-(2.*x1*x1+2.*sqrt(2.)*x1*x2+2.*x2*x2)/(2.*x1*x1*d1)
 ydot(2)=-1./(sqrt(2.)*d1)
 write(2,*) n
 write(2,*) (ydot(i),i=1,n)
 stop
 end

C.6.11. con2_grad.f
 implicit real*8(a-h,o-z)
 dimension ydot(2)
 open(1,file='design_var')
 open(2,file='g2dot.dat')
 read(1,*) dum,x1
 read(1,*) dum,x2
 n=2
 d1=(x1+sqrt(2.)*x2)**2
 ydot(1)=-0.5/d1
 ydot(2)=-sqrt(2.)/d1
 write(2,*) n
 write(2,*) (ydot(i),i=1,n)
 stop
 end

 38

References
 1. Lung, Shun-fat, and Chan-gi Pak, Structural Model Tuning Capability in an Object-Oriented

Multidisciplinary Design, Analysis, and Optimization Tool, NASA/TM-2008-214640, 2008.

 2. Lung, Shun-fat, and Chan-gi Pak, “Updating the Finite Element Model of the Aerostructures Test Wing

Using Ground Vibration Test Data,” AIAA-2009-2528.

 3. Pak, Chan-gi, and Shun-fat Lung, Reduced Uncertainties in the Flutter Analysis of the Aerostructures

Test Wing, NASA/TM-2011-216421, 2011.

 4. MSC.NASTRAN 2005 quick reference guide, MSC.Software Corporation, 2004.

 5. Matlab 7 getting started guide, The MathWorks, Inc., 2008.

 6. ZAERO version 8.0 user’s manual, ZONA Technology, Inc., 2007.

 7. Krist, Sherrie L., Robert T. Biedron, and Christopher L. Rumsey, “CFL3D User’s Manual

(Version 5.0),” NASA-TM-1998-208444, 1998.

 8. DOT design optimization tools user’s manual version 5.0, Vanderplaats Research & Development,

Inc., 2001.

 9. Charbonneau, P., and B. Knapp, A user’s guide to PIKAIA 1.0, National Center for Atmospheric

Research, 1995.

 10. Goldberg, D., Genetic algorithms in search, optimization, and machine learning, Addison-Wesley

Professional, 1989.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

1. REPORT DATE (DD-MM-YYYY)
01-01-2011

2. REPORT TYPE
Technical Memorandum

 4. TITLE AND SUBTITLE
Preliminary Development of an Object-Oriented Optimization Tool

5a. CONTRACT NUMBER

 6. AUTHOR(S)
Pak, Chan-gi

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NASA Dryden Flight Research Center
P.O. Box 273
Edwards, CA 93523-0273

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

H-3079

10. SPONSORING/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES
Pak, NASA Dryden Flight Research Center

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 59 Availability: NASA CASI (443) 757-5802 Distribution: Standard

19b. NAME OF RESPONSIBLE PERSON

STI Help Desk at e-mail: help@sti.nasa.gov

14. ABSTRACT
The National Aeronautics and Space Administration Dryden Flight Research Center has developed a FORTRAN-based object-
oriented optimization (O3) tool that leverages existing tools and practices and allows easy integration and adoption of new state-of-
the-art software. The object-oriented framework can integrate the analysis codes for multiple disciplines, as opposed to relying on
one code to perform analysis for all disciplines. Optimization can thus take place within each discipline module, or in a loop between
the central executive module and the discipline modules, or both. Six sample optimization problems are presented. The first four
sample problems are based on simple mathematical equations; the fifth and sixth problems consider a three-bar truss, which is a
classical example in structural synthesis. Instructions for preparing input data for the O3 tool are presented.

15. SUBJECT TERMS
Central executive module; Genetic algorithm,; Gradient-based optimizer; Multidisciplinary design, analysis, and optimization
(MDAO); Quick reference guide

18. NUMBER
 OF
 PAGES

43
19b. TELEPHONE NUMBER (Include area code)

(443) 747-5802

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39-18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

11. SPONSORING/MONITORING
 REPORT NUMBER

NASA/TM-2011-216419

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or
any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services,
Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware
that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a
currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

