884 research outputs found
Fowler-Nordheim-like local injection of photoelectrons from a silicon tip
Tunneling between a photo-excited p-type silicon tip and a gold surface is
studied as a function of tip bias, tip/sample distance and light intensity. In
order to extend the range of application of future spin injection experiments,
the measurements are carried out under nitrogen gas at room temperature. It is
found that while tunneling of valence band electrons is described by a standard
process between the semiconductor valence band and the metal, the tunneling of
photoelectrons obeys a Fowler-Nordheim-like process directly from the
conduction band. In the latter case, the bias dependence of the photocurrent as
a function of distance is in agreement with theoretical predictions which
include image charge effects. Quantitative analysis of the bias dependence of
the dark and photocurrent spectra gives reasonable values for the distance, and
for the tip and metal work functions. For small distances image charge effects
induce a vanishing of the barrier and the bias dependence of the photocurrent
is exponential. In common with many works on field emission, fluctuations in
the tunneling currents are observed. These are mainly attributed to changes in
the prefactor for the tunneling photocurrent, which we suggest is caused by an
electric-field-induced modification of the thickness of the natural oxide layer
covering the tip apex.Comment: 12 pages, 11 figures. Submitted to Phys. Rev.
Quantum-dot spin qubit and hyperfine interaction
We review our investigation of the spin dynamics for two electrons confined
to a double quantum dot under the influence of the hyperfine interaction
between the electron spins and the surrounding nuclei. Further we propose a
scheme to narrow the distribution of difference in polarization between the two
dots in order to suppress hyperfine induced decoherence.Comment: 12 pages, 3 figures; Presented as plenary talk at the annual DPG
meeting 2006, Dresden (to appear in Advances in Solid State Physics vol. 46,
2006
A New Type of Electron Nuclear-Spin Interaction from Resistively Detected NMR in the Fractional Quantum Hall Effect Regime
Two dimensional electron gases in narrow GaAs quantum wells show huge
longitudinal resistance (HLR) values at certain fractional filling factors.
Applying an RF field with frequencies corresponding to the nuclear spin
splittings of {69}Ga, {71}Ga and {75}As leads to a substantial decreases of the
HLR establishing a novel type of resistively detected NMR. These resonances are
split into four sub lines each. Neither the number of sub lines nor the size of
the splitting can be explained by established interaction mechanisms.Comment: 4 pages, 3 figure
Voltage control of nuclear spin in ferromagnetic Schottky diodes
We employ optical pump-probe spectroscopy to investigate the voltage
dependence of spontaneous electron and nuclear spin polarizations in hybrid
MnAs/n-GaAs and Fe/n-GaAs Schottky diodes. Through the hyperfine interaction,
nuclear spin polarization that is imprinted by the ferromagnet acts on
conduction electron spins as an effective magnetic field. We demonstrate tuning
of this nuclear field from <0.05 to 2.4 kG by varying a small bias voltage
across the MnAs device. In addition, a connection is observed between the diode
turn-on and the onset of imprinted nuclear polarization, while traditional
dynamic nuclear polarization exhibits relatively little voltage dependence.Comment: Submitted to Physical Review B Rapid Communications. 15 pages, 3
figure
Dynamic nuclear polarization at the edge of a two-dimensional electron gas
We have used gated GaAs/AlGaAs heterostructures to explore nonlinear
transport between spin-resolved Landau level (LL) edge states over a submicron
region of two-dimensional electron gas (2DEG). The current I flowing from one
edge state to the other as a function of the voltage V between them shows
diode-like behavior---a rapid increase in I above a well-defined threshold V_t
under forward bias, and a slower increase in I under reverse bias. In these
measurements, a pronounced influence of a current-induced nuclear spin
polarization on the spin splitting is observed, and supported by a series of
NMR experiments. We conclude that the hyperfine interaction plays an important
role in determining the electronic properties at the edge of a 2DEG.Comment: 8 pages RevTeX, 7 figures (GIF); submitted to Phys. Rev.
Spin battery operated by ferromagnetic resonance
Precessing ferromagnets are predicted to inject a spin current into adjacent
conductors via Ohmic contacts, irrespective of a conductance mismatch with, for
example, doped semiconductors. This opens the way to create a pure spin source
spin battery by the ferromagnetic resonance. We estimate the spin current and
spin bias for different material combinations.Comment: The estimate for the magnitude of the spin bias is improved. We find
that it is feasible to get a measurable signal of the order of the microwave
frequency already for moderate rf intensitie
The anti-sigma factor RsrA responds to oxidative stress by reburying its hydrophobic core
Redox-regulated effector systems that counteract oxidative stress are essential for all forms of life. Here we uncover a new paradigm for sensing oxidative stress centred on the hydrophobic core of a sensor protein. RsrA is an archetypal zinc-binding anti-sigma factor that responds to disulfide stress in the cytoplasm of Actinobacteria. We show that RsrA utilizes its hydrophobic core to bind the sigma factor σ R preventing its association with RNA polymerase, and that zinc plays a central role in maintaining this high-affinity complex. Oxidation of RsrA is limited by the rate of zinc release, which weakens the RsrA-σ R complex by accelerating its dissociation. The subsequent trigger disulfide, formed between specific combinations of RsrA's three zinc-binding cysteines, precipitates structural collapse to a compact state where all σ R-binding residues are sequestered back into its hydrophobic core, releasing σ R to activate transcription of anti-oxidant genes
Electron spin dynamics in quantum dots and related nanostructures due to hyperfine interaction with nuclei
We review and summarize recent theoretical and experimental work on electron
spin dynamics in quantum dots and related nanostructures due to hyperfine
interaction with surrounding nuclear spins. This topic is of particular
interest with respect to several proposals for quantum information processing
in solid state systems. Specifically, we investigate the hyperfine interaction
of an electron spin confined in a quantum dot in an s-type conduction band with
the nuclear spins in the dot. This interaction is proportional to the square
modulus of the electron wave function at the location of each nucleus leading
to an inhomogeneous coupling, i.e. nuclei in different locations are coupled
with different strength. In the case of an initially fully polarized nuclear
spin system an exact analytical solution for the spin dynamics can be found.
For not completely polarized nuclei, approximation-free results can only be
obtained numerically in sufficiently small systems. We compare these exact
results with findings from several approximation strategies.Comment: 26 pages, 9 figures. Topical Review to appear in J. Phys.: Condens.
Matte
Recommended from our members
Highly selective and solvent-dependent reduction of Nitrobenzene to N-phenylhydroxylamine, azoxybenzene, and aniline catalyzed by phosphino-modified polymer immobilized ionic liquid-stabilized AuNPs
Gold nanoparticles stabilized by phosphine-decorated polymer immobilized ionic liquids (AuNP@PPh2-PIILP) is an extremely efficient multiproduct selective catalyst for the sodium borohydride-mediated reduction of nitrobenzene giving N-phenylhydroxylamine, azoxybenzene, or aniline as the sole product under mild conditions and a very low catalyst loading. The use of a single nanoparticle-based catalyst for the partial and complete reduction of nitroarenes to afford three different products with exceptionally high selectivities is unprecedented. Under optimum conditions, thermodynamically unfavorable N-phenylhydroxylamine can be obtained as the sole product in near quantitative yield in water, whereas a change in reaction solvent to ethanol results in a dramatic switch in selectivity to afford azoxybenzene. The key to obtaining such a high selectivity for N-phenylhydroxylamine is the use of a nitrogen atmosphere at room temperature as reactions conducted under an inert atmosphere occur via the direct pathway and are essentially irreversible, while reactions in air afford significant amounts of azoxy-based products by virtue of competing condensation due to reversible formation of N-phenylhydroxylamine. Ultimately, aniline can also be obtained quantitatively and selectively by adjusting the reaction temperature and time accordingly. Introduction of PEG onto the polyionic liquid resulted in a dramatic improvement in catalyst efficiency such that N-phenylhydroxylamine could be obtained with a turnover number (TON) of 100 000 (turnover frequency (TOF) of 73 000 h–1, with >99% selectivity), azoxybenzene with a TON of 55 000 (TOF of 37 000 h–1 with 100% selectivity), and aniline with a TON of 500 000 (TOF of 62 500 h–1, with 100% selectivity). As the combination of ionic liquid and phosphine is required to achieve high activity and selectivity, further studies are currently underway to explore whether interfacial electronic effects influence adsorption and thereby selectivity and whether channeling of the substrate by the electrostatic potential around the AuNPs is responsible for the high activity. This is the first report of a AuNP-based system that can selectively reduce nitroarenes to either of two synthetically important intermediates as well as aniline and, in this regard, is an exciting discovery that will form the basis to develop a continuous flow process enabling facile scale-up
- …