140 research outputs found

    UHPLC-HRMS Analysis of Fagus sylvatica (Fagaceae) Leaves: A Renewable Source of Antioxidant Polyphenols

    Get PDF
    European beech (Fagus sylvatica L.) is a deciduous tree, widely distributed in Europe and largely appreciated for its wood and nutritive nuts. Beech leaf also enjoys food use as salad, but an understanding of its nutraceutical value is still far from being achieved. Indeed, and also taking into account beech leaf as a consistent biomass residue available beechwood production and use, it needs to be explored as a valuable renewable specialized source of bioactive molecules. In this context, an untargeted ultra-high-performance liquid chromatography hyphenated with high resolution mass spectrometry (UHPLC-HRMS) approach was favorably applied to a beech leaf alcoholic extract, which also was evaluated for its antiradical capability (by means of assays based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and [2,2'-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid)] (ABTS) radical cation) and its ferric ion reducing power. Redox mitochondrial activity towards Caco-2 cells paved the way to explore the extract's capability to inhibit intracellular Reactive Oxygen Species (ROS) using 2',7'dichlorofluorescin diacetate (DCFH-DA) assay. Hydroxycinnamoyl derivatives, mainly belonging to the chlorogenic acid class, and flavonoids were the main constituents. Uncommon flavanone C-glycosides were also found, together with a plentiful flavonol diversity. Cell-free and cell-based assays highlight its dose-dependent antioxidant efficacy, providing a foundation for further investigation of beech leaf constituents and its valorization and use as a reservoir of bioactive natural products with potential nutraceutical applications

    Synthesis of WEEE-based geopolymers and their cytotoxicity

    Get PDF
    Alkali activated metakaolin-based geopolymer materials were used to blend in fine powder glasses from waste electric and electronic equipment. In particular, glasses from funnel and panel parts of cathode ray tubes were recovered and re-utilized, thus obtaining GPVFNL and GPVBa enriched geopolymers. The materials were characterized by means of Fourier Transform InfraRed spectroscopy (FT-IR), and in order to avoid health risk for humans, cytotoxicity was preliminarily assessed by means of MTT test towards NIH-3T3 murine fibroblast cell line. The synthetized geopolymers showed an important anti-bacterial activity vs. Escherichia col

    New SiO2/Caffeic Acid Hybrid Materials: Synthesis, Spectroscopic Characterization, and Bioactivity

    Get PDF
    The sol-gel route represents a valuable technique to obtain functional materials, in which organic and inorganic members are closely connected. Herein, four hybrid materials, containing caffeic acid entrapped in a silica matrix at 5, 10, 15, and 20 wt.%, were synthesized and characterized through Fourier-Transform Infrared (FT-IR) and Ultraviolet-Visible (UV-Vis) spectroscopy. FT-IR analysis was also performed to evaluate the ability to induce the hydroxyapatite nucleation. Despite some structural changes occurring on the phenol molecular skeleton, hybrid materials showed scavenging properties vs. 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and 2,2 '-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid) radical cation (ABTS center dot(+)), which was dependent on the tested dose and on the caffeic acid wt.%. The SiO2/caffeic acid materials are proposed as valuable antibacterial agents against Escherichia coli and Enterococcus faecalis

    Synthesis of zirconia/polyethylene glycol hybrid materials by sol-gel processing and connections between structure and release kinetic of indomethacin.

    Get PDF
    Controlled and local drug delivery systems of anti-inflammatory agents are attracting an increasing attention because of their extended therapeutic effect and reduced side effects. In this work, the sol–gel process was used to synthesize zirconia/polyethylene glycol (ZrO2/PEG) hybrid materials containing indomethacin for controlled drug delivery. Different percentages of PEG were introduced in the synthesis to modulate the release kinetic and an exhaustive chemical characterization of all samples was performed to detect the relationship between their structure and release ability. Fourier transform spectroscopy and solid-state NMR show that the Zr–OH groups of the inorganic matrix bond both the ethereal oxygen atoms of the polymer and the carboxylic groups of the drug. X-ray diffraction analysis ascertains the amorphous nature of those materials. Scanning electron microscopy detects the nanostructure and the homogeneous morphology of the synthesized materials. The bioactivity was demonstrated by the formation of a hydroxyapatite layer on the surface of the samples, after soaking in a simulated body fluid. The release kinetics study, performed by HPLC UV–Vis spectroscopy, proves that the release ability depends on PEG and the drug amount and also demonstrates the indomethacin integrity after the synthetic treatment. Controlled and local drug delivery systems of anti-inflammatory agents are attracting an increasing attention because of their extended therapeutic effect and reduced side effects. In this work, the sol-gel process was used to synthesize zirconia/polyethylene glycol (ZrO2/PEG) hybrid materials containing indomethacin for controlled drug delivery. Different percentages of PEG were introduced in the synthesis to modulate the release kinetic and an exhaustive chemical characterization of all samples was performed to detect the relationship between their structure and release ability. Fourier transform spectroscopy and solid-state NMR show that the Zr-OH groups of the inorganic matrix bond both the ethereal oxygen atoms of the polymer and the carboxylic groups of the drug. X-ray diffraction analysis ascertains the amorphous nature of those materials. Scanning electron microscopy detects the nanostructure and the homogeneous morphology of the synthesized materials. The bioactivity was demonstrated by the formation of a hydroxyapatite layer on the surface of the samples, after soaking in a simulated body fluid. The release kinetics study, performed by HPLC UV-Vis spectroscopy, proves that the release ability depends on PEG and the drug amount and also demonstrates the indomethacin integrity after the synthetic treatment

    Theobromacacao Criollo var. Beans: Biological Properties and Chemical Profile

    Get PDF
    Abstract: Theobroma cacao provides precious products such as polyphenol-rich beans that are useful for nutraceutical purposes. The geographical area may influence the chemical composition of raw cocoa beans in terms of the polyphenols and biological qualities of the products. This work aimed to investigate the biological properties and the chemical composition of two different samples of Criollo var. cocoa raw beans coming from two areas (Indonesia; Peru). Beans underwent biphasic extraction obtaining lipophilic and hydroalcoholic extracts. The extracts were tested for antiradical, antimutagenic, and antigenotoxic effects. Cell viability inhibition toward breast, gastric/esophageal colorectal adenocarcinoma, and hepatoblastoma human cell lines was evaluated. Extracts were chemically investigated through UV-Vis spectroscopy and ultra-high-pressure liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QqTOF MS/MS). Results showed that the Indonesian bean hydroalcoholic extracts were able to scavenge 20 -azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) cation radical better than the Peruvian hydroalcoholic extracts (ECs50: 72.63 vs. 322.20 µg/mL). Extracts showed antimutagenic and antigenotoxic activity. The viability inhibitory effect on breast and hepatic cancer cells was reached only for the Indonesian hydroalcoholic extracts at hundreds of µg/mL. Phenylpropenoyl-Lamino acids, hydroxycinnamoyl aminoacids conjugates, and procyanidin compounds were found mainly in the hydroalcoholic extracts, whereas fatty acids and lyso-phospholipids were found mainly in lipophilic fractions. Fatty acid and (epi)catechins appeared to be affected by different environmental conditions of the geographical areas

    New Seleno-Glyconjugates for Nutraceutical Application

    Get PDF
    Oxidative stress is a disequilibrium redox condition that occurs due to high concentration of prooxidant reactive species (RS) and, by comparison, a lower concentration of endogenous antioxidants in the body.1 Oxidative stress, caused by RS, is involved into the genesis of different pathologies such as inflammatory bowel disease, cardiovascular disease, Alzheimer’s disease, diabetes and cancer.2 Nutraceuticals could be used to prevent oxidative stress as an additional health benefit along with nutrition.1 The use of exogenous antioxidants can ameliorate this stressful condition and restore the redox disequilibrium.3 Polyphenols have a potential health-promoting effect, however, show a low bioavailability.4 For this reason, synthesis of organic seleniumcompounds combined to (poly)phenolic compounds could increase the solubility and exert their potential synergistic antioxidant effects. The approach proposed consists of preparing the D-ribose derivative 1 to obtain the donor 2 then employed to produce glycoconjugates containing well known (poly)phenols through a Mitsunobu reaction.5 To assess the bioactivity of selenoglycoconjugates, DPPH and ABTS antiradical assays were performed, while the effects on cell proliferation were preliminarily investigated on SH-SY5Y cells. The phenol moiety greatly affected both the antiradical efficacy and the mitochondrial redox activity. The glycoconjugates, especially at the highest tested concentrations, exhibited cytotoxic effects lower than that of unconjugated phenolic compounds, underlining the mitigating impact of selenosugar

    Advancements in sustainable natural dyes for textile applications: a review

    Get PDF
    The dyeing and finishing step represents a clear hotspot in the textile supply chain as the wet processing stages require significant amounts of water, energy, and chemicals. In order to tackle environmental issues, natural dyes are gaining attention from researchers as more sustainable alternatives to synthetic ones. This review discusses the topic of natural dyes, providing a description of their main features and differences compared to synthetic dyes, and encompasses a summary of recent research in the field of natural dyes with specific reference to the following areas of sustainable innovation: extraction techniques, the preparation of substrates, the mordanting process, and the dyeing process. The literature review showed that promising new technologies and techniques have been successfully employed to improve the performance and sustainability of natural dyeing processes, but several limitations such as the poor fastness properties of natural dyes, their low affinity with textiles substrates, difficulties in the reproducibility of shades, as well as other factors such as cost-effectiveness considerations, still prevent industry from adopting natural dyes on a larger scale and will require further research in order to expand their use beyond niche applicationsThis work was funded by AGAUR within the OliWasTex project (2021-PROD00074)Objectius de Desenvolupament Sostenible::9 - Indústria, Innovació i InfraestructuraObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i Infraestructura::9.4 - Per a 2030, modernitzar les infraestructures i reconvertir les indústries perquè siguin sostenibles, usant els recursos amb més eficàcia i promovent l’adopció de tecnologies i processos industrials nets i racionals ambiental­ment, i aconseguint que tots els països adoptin mesures d’acord amb les capacitats respectivesObjectius de Desenvolupament Sostenible::12 - Producció i Consum ResponsablesObjectius de Desenvolupament Sostenible::12 - Producció i Consum Responsables::12.5 - Per a 2030, disminuir de manera substancial la generació de residus mitjançant polítiques de prevenció, reducció, reciclatge i reutilitzacióObjectius de Desenvolupament Sostenible::12 - Producció i Consum Responsables::12.2 - Per a 2030, assolir la gestió sostenible i l’ús eficient dels recursos naturalsObjectius de Desenvolupament Sostenible::12 - Producció i Consum Responsables::12.4 - Per a 2020, aconseguir la gestió ecològicament racional dels productes químics i de tots els residus al llarg del seu cicle de vida, de conformitat amb els marcs internacionals convinguts, i reduir-ne de manera significativa l’alliberament a l’atmosfera, a l’aigua i al sòl a fi de minimitzar-ne els efectes adversos sobre la salut humana i el medi ambientPostprint (published version

    A New System of Sustainable Silico-Aluminous and Silicate Materials for Cultivation Purpose within Sustainable Buildings: Chemical-Physical, Antibacterial and Cytotoxicity Properties

    Get PDF
    n this study, we compared the chemical-physical, antibacterial, and cytotoxicity properties of silico-aluminous and silicate materials for outdoor (green roof, planted walls) and indoor (urban farms, indoor microgreen gardens) cultivation purpose in a context of sustainable construction. Glasses and lightweight aggregates were tailored starting from waste, by-product, and post-consumer and bioproducts (packaging glass cullet, cattle bone flour ash, vegetable biomass ash, spent coffee ground, degreased from biomass of prepupae of Black Soldier Flies) mixed together with a national ferruginous red clay, quarry scrap pumice and, if necessary, with K2CO3 of reagent grade. The first type of material was obtained by melting at 1200 °C and the second one by powder sintering at 1000 °C. All specimens, subjected to antibacterial test, showed both low zone of inhibitions towards two Gram-negative and two Gram-positive bacterial strains. A cytotoxicity test on mouse embryonic fibroblast NIH-3T3 cell line directly exposed to the investigated materials was performed at three different exposure times (1 h, 3 h, and 6 h). Data acquired highlighted that the materials positively affected redox mitochondrial activity of the fibroblast cells. The concentrations of leachate heavy metals detected on selected materials in water at room temperature after 24 h were lower than the European law limit and an interesting release of P, K, and N nutrients was noted for those formulations designed for agronomic purposes. pH, falling on average within the 6.5–7.5 range, is optimal for most crops, and the specific conductivity <2 dS/m indicates no depression danger for crops. Both bulk density <1200 kg/m3 and porosity over 50% seem to ensure good performance of lightening, drainage, water reservation, and oxygenation of the roots

    UHPLC-ESI-QqTOF Analysis and In Vitro Rumen Fermentation for Exploiting Fagus sylvatica Leaf in Ruminant Diet

    Get PDF
    In recent years, animal husbandry has aimed at improving the conditions of livestock animals useful for humans to solve environmental and health problems. The formulation of animal feeds or supplements based on antioxidant plant compounds is considered a valuable approach and an alternative for livestock productivity. Forest biomass materials are an underestimated source of polyphenolic compounds whose sustainable recovery could provide direct benefits to animals and, indirectly, human nutrition. In this context, an alcohol extract from leaves of Fagus sylvatica L. was first investigated through an untargeted ultra-high-performance liquid chromatography-high-resolution tandem mass spectrometry (UHPLC-HRMS/MS) approach. Then, it was fractionated into a fatty acid-rich and a polyphenolic fraction, as evidenced by total lipid, phenol, and flavonoid content assays, with antiradical and reducing activity positively correlated to the latter. When tested in vitro with rumen liquor to evaluate changes in the fermentative parameters, a significant detrimental effect was exerted by the lipid-rich fraction, whereas the flavonoid-rich one positively modulated the production of volatile fatty acids (i.e., acetate, butyrate, propionate, etc.)
    corecore