1,222 research outputs found
Non-Close-Packed Three-Dimensional Quasicrystals
Quasicrystals are frequently encountered in condensed matter. They are
important candidates for equilibrium phases from the atomic scale to the
nanoscale. Here, we investigate the computational self-assembly of four
quasicrystals in a single model system of identical particles interacting with
a tunable isotropic pair potential. We reproduce a known icosahedral
quasicrystal and report a decagonal quasicrystal, a dodecagonal quasicrystal,
and an octagonal quasicrystal. The quasicrystals have low coordination number
or occur in systems with mesoscale density variations. We also report a network
gel phase.Comment: 9 pages, 8 figure
Complexity in surfaces of densest packings for families of polyhedra
Packings of hard polyhedra have been studied for centuries due to their
mathematical aesthetic and more recently for their applications in fields such
as nanoscience, granular and colloidal matter, and biology. In all these
fields, particle shape is important for structure and properties, especially
upon crowding. Here, we explore packing as a function of shape. By combining
simulations and analytic calculations, we study three 2-parameter families of
hard polyhedra and report an extensive and systematic analysis of the densest
packings of more than 55,000 convex shapes. The three families have the
symmetries of triangle groups (icosahedral, octahedral, tetrahedral) and
interpolate between various symmetric solids (Platonic, Archimedean, Catalan).
We find that optimal (maximum) packing density surfaces that reveal unexpected
richness and complexity, containing as many as 130 different structures within
a single family. Our results demonstrate the utility of thinking of shape not
as a static property of an object in the context of packings, but rather as but
one point in a higher dimensional shape space whose neighbors in that space may
have identical or markedly different packings. Finally, we present and
interpret our packing results in a consistent and generally applicable way by
proposing a method to distinguish regions of packings and classify types of
transitions between them.Comment: 16 pages, 8 figure
Novel role of 3'UTR-embedded Alu elements as facilitators of processed pseudogene genesis and host gene capture by viral genomes
Since the discovery of the high abundance of Alu elements in the human genome, the interest for the functional significance of these retrotransposons has been increasing. Primate Alu and rodent Alu-like elements are retrotransposed by a mechanism driven by the LINE1 (L1) encoded proteins, the same machinery that generates the L1 repeats, the processed pseudogenes (PPs), and other retroelements. Apart from free Alu RNAs, Alus are also transcribed and retrotranscribed as part of cellular gene transcripts, generally embedded inside 3' untranslated regions (UTRs). Despite different proposed hypotheses, the functional implication of the presence of Alus inside 3'UTRs remains elusive. In this study we hypothesized that Alu elements in 3'UTRs could be involved in the genesis of PPs. By analyzing human genome data we discovered that the existence of 3'UTR-embedded Alu elements is overrepresented in genes source of PPs. In contrast, the presence of other retrotransposable elements in 3'UTRs does not show this PP linked overrepresentation. This research was extended to mouse and rat genomes and the results accordingly reveal overrepresentation of 3'UTR-embedded B1 (Alu-like) elements in PP parent genes. Interestingly, we also demonstrated that the overrepresentation of 3'UTR-embedded Alus is particularly significant in PP parent genes with low germline gene expression level. Finally, we provide data that support the hypothesis that the L1 machinery is also the system that herpesviruses, and possibly other large DNA viruses, use to capture host genes expressed in germline or somatic cells. Altogether our results suggest a novel role for Alu or Alu-like elements inside 3'UTRs as facilitators of the genesis of PPs, particularly in lowly expressed genes. Moreover, we propose that this L1-driven mechanism, aided by the presence of 3'UTR-embedded Alus, may also be exploited by DNA viruses to incorporate host genes to their viral genomes
Recommended from our members
SAP-Dependent and -Independent Regulation of Innate T Cell Development Involving SLAMF Receptors
Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) plays an essential role in the immune system mediating the function of several members of the SLAM family (SLAMF) of receptors, whose expression is essential for T, NK, and B-cell responses. Additionally, the expression of SAP in double-positive thymocytes is mandatory for natural killer T (NKT) cells and, in mouse, for innate CD8+ T cell development. To date, only two members of the SLAMF of receptors, Slamf1 and Slamf6, have been shown to positively cooperate during NKT cell differentiation in mouse. However, it is less clear whether other members of this family may also participate in the development of these innate T cells. Here, we show that Slamf[1 + 6]−/− and Slamf[1 + 5 + 6]−/−B6 mice have ~70% reduction of NKT cells compared to wild-type B6 mice. Unexpectedly, the proportion of innate CD8+ T cells slightly increased in the Slamf[1 + 5 + 6]−/−, but not in the Slamf[1 + 6]−/− strain, suggesting that Slamf5 may function as a negative regulator of innate CD8+ T cell development. Accordingly, Slamf5−/− B6 mice showed an exclusive expansion of innate CD8+ T cells, but not NKT cells. Interestingly, the SAP-independent Slamf7−/− strain showed an expansion of both splenic innate CD8+ T cells and thymic NKT cells. On the other hand, and similar to what was recently shown in Slamf3−/− BALB/c mice, the proportions of thymic promyelocytic leukemia zinc finger (PLZFhi) NKT cells and innate CD8+ T cells significantly increased in the SAP-independent Slamf8−/− BALB/c strain. In summary, these results show that NKT and innate CD8+ T cell development can be regulated in a SAP-dependent and -independent fashion by SLAMF receptors, in which Slamf1, Slamf6, and Slamf8 affect development of NKT cells, and that Slamf5, Slamf7, and Slamf8 affect the development of innate CD8+ T cells
Recommended from our members
Ly9 (CD229) Cell-Surface Receptor is Crucial for the Development of Spontaneous Autoantibody Production to Nuclear Antigens
The Signaling Lymphocyte Activation Molecule Family (SLAMF) genes, which encode cell-surface receptors that modulate innate and adaptive immune responses, lay within a genomic region of human and mouse chromosome 1 that confers a predisposition for the development of systemic lupus erythematosus (SLE). Herein, we demonstrate that the SLAMF member Ly9 arises as a novel receptor contributing to the reinforcement of tolerance. Specifically, Ly9-deficient mice spontaneously developed features of systemic autoimmunity such as the production of anti-nuclear antibodies (ANA), -dsDNA, and -nucleosome autoantibodies, independently of genetic background [(B6.129) or (BALB/c.129)]. In aged (10- to 12-month-old) Ly9−/− mice key cell subsets implicated in autoimmunity were expanded, e.g., T follicular helper (Tfh) as well as germinal center (GC) B cells. More importantly, in vitro functional experiments showed that Ly9 acts as an inhibitory receptor of IFN-γ producing CD4+ T cells. Taken together, our findings reveal that the Ly9 receptor triggers cell intrinsic safeguarding mechanisms to prevent a breach of tolerance, emerging as a new non-redundant inhibitory cell-surface receptor capable of disabling autoantibody responses
El gobierno autónomo en la transición energética ecuatoriana: reflexiones sobre la participación local en el proyecto hidroeléctrico Coca Codo Sinclair (CCS)
Role of short-range order and hyperuniformity in the formation of band gaps in disordered photonic materials
We study photonic band gap formation in two-dimensional high-refractive-index disordered materials where the dielectric structure is derived from packing disks in real and reciprocal space. Numerical calculations of the photonic density of states demonstrate the presence of a band gap for all polarizations in both cases. We find that the band gap width is controlled by the increase in positional correlation inducing short-range order and hyperuniformity concurrently. Our findings suggest that the optimization of short-range order, in particular the tailoring of Bragg scattering at the isotropic Brillouin zone, are of key importance for designing disordered PBG materials
- …
