Packings of hard polyhedra have been studied for centuries due to their
mathematical aesthetic and more recently for their applications in fields such
as nanoscience, granular and colloidal matter, and biology. In all these
fields, particle shape is important for structure and properties, especially
upon crowding. Here, we explore packing as a function of shape. By combining
simulations and analytic calculations, we study three 2-parameter families of
hard polyhedra and report an extensive and systematic analysis of the densest
packings of more than 55,000 convex shapes. The three families have the
symmetries of triangle groups (icosahedral, octahedral, tetrahedral) and
interpolate between various symmetric solids (Platonic, Archimedean, Catalan).
We find that optimal (maximum) packing density surfaces that reveal unexpected
richness and complexity, containing as many as 130 different structures within
a single family. Our results demonstrate the utility of thinking of shape not
as a static property of an object in the context of packings, but rather as but
one point in a higher dimensional shape space whose neighbors in that space may
have identical or markedly different packings. Finally, we present and
interpret our packing results in a consistent and generally applicable way by
proposing a method to distinguish regions of packings and classify types of
transitions between them.Comment: 16 pages, 8 figure