39 research outputs found

    18F-FDG PET/CT for diagnosing infectious complications in patients with severe neutropenia after intensive chemotherapy for haematological malignancy or stem cell transplantation

    Get PDF
    Item does not contain fulltextPURPOSE: Between 30 and 50% of febrile neutropenic episodes are accounted for by infection. C-reactive protein (CRP) is a nonspecific parameter for infection and inflammation but might be employed as a trigger for diagnosis. The aim of the study was to evaluate whether (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT can be used to detect inflammatory foci in neutropenic patients with elevated CRP and whether it helps to direct treatment. METHODS: Twenty-eight consecutive patients with neutropenia as a result of intensive chemotherapy for haematological malignancies or myeloablative therapy for haematopoietic stem cell transplantation were prospectively included. (18)F-FDG PET/CT was added to the regular diagnostic workup once the CRP level rose above 50 mg/l. RESULTS: Pathological FDG uptake was found in 26 of 28 cases despite peripheral neutrophil counts less than 0.1 x 10(-9)/l in 26 patients: in the digestive tract in 18 cases, around the tract of the central venous catheter (CVC) in 9 and in the lungs in 7 cases. FDG uptake in the CVC tract was associated with coagulase-negative staphylococcal bacteraemia (p < 0.001) and deep venous thrombosis (p = 0.002). The number of patients having Streptococcus mitis bacteraemia appeared to be higher in patients with grade 3 oesophageal FDG uptake (p = 0.08). Pulmonary FDG uptake was associated with the presence of invasive fungal disease (p = 0.04). CONCLUSION: (18)F-FDG PET/CT scanning during chemotherapy-induced febrile neutropenia and increased CRP is able to detect localized foci of infection and inflammation despite the absence of circulating neutrophils. Besides its potential role in detecting CVC-related infection during febrile neutropenia, the high negative predictive value of (18)F-FDG PET/CT is important for avoiding unnecessary diagnostic tests and therapy.1 januari 201

    Radionuclide imaging of bone marrow disorders

    Get PDF
    Noninvasive imaging techniques have been used in the past for visualization the functional activity of the bone marrow compartment. Imaging with radiolabelled compounds may allow different bone marrow disorders to be distinguished. These imaging techniques, almost all of which use radionuclide-labelled tracers, such as 99mTc-nanocolloid, 99mTc-sulphur colloid, 111In-chloride, and radiolabelled white blood cells, have been used in nuclear medicine for several decades. With these techniques three separate compartments can be recognized including the reticuloendothelial system, the erythroid compartment and the myeloid compartment. Recent developments in research and the clinical use of PET tracers have made possible the analysis of additional properties such as cellular metabolism and proliferative activity, using 18F-FDG and 18F-FLT. These tracers may lead to better quantification and targeting of different cell systems in the bone marrow. In this review the imaging of different bone marrow targets with radionuclides including PET tracers in various bone marrow diseases are discussed

    AMP-Activated Kinase Restricts Rift Valley Fever Virus Infection by Inhibiting Fatty Acid Synthesis

    Get PDF
    The cell intrinsic innate immune responses provide a first line of defense against viral infection, and often function by targeting cellular pathways usurped by the virus during infection. In particular, many viruses manipulate cellular lipids to form complex structures required for viral replication, many of which are dependent on de novo fatty acid synthesis. We found that the energy regulator AMPK, which potently inhibits fatty acid synthesis, restricts infection of the Bunyavirus, Rift Valley Fever Virus (RVFV), an important re-emerging arthropod-borne human pathogen for which there are no effective vaccines or therapeutics. We show restriction of RVFV both by AMPK and its upstream activator LKB1, indicating an antiviral role for this signaling pathway. Furthermore, we found that AMPK is activated during RVFV infection, leading to the phosphorylation and inhibition of acetyl-CoA carboxylase, the first rate-limiting enzyme in fatty acid synthesis. Activating AMPK pharmacologically both restricted infection and reduced lipid levels. This restriction could be bypassed by treatment with the fatty acid palmitate, demonstrating that AMPK restricts RVFV infection through its inhibition of fatty acid biosynthesis. Lastly, we found that this pathway plays a broad role in antiviral defense since additional viruses from disparate families were also restricted by AMPK and LKB1. Therefore, AMPK is an important component of the cell intrinsic immune response that restricts infection through a novel mechanism involving the inhibition of fatty acid metabolism

    Interstitial lung disease in children - genetic background and associated phenotypes

    Get PDF
    Interstitial lung disease in children represents a group of rare chronic respiratory disorders. There is growing evidence that mutations in the surfactant protein C gene play a role in the pathogenesis of certain forms of pediatric interstitial lung disease. Recently, mutations in the ABCA3 transporter were found as an underlying cause of fatal respiratory failure in neonates without surfactant protein B deficiency. Especially in familiar cases or in children of consanguineous parents, genetic diagnosis provides an useful tool to identify the underlying etiology of interstitial lung disease. The aim of this review is to summarize and to describe in detail the clinical features of hereditary interstitial lung disease in children. The knowledge of gene variants and associated phenotypes is crucial to identify relevant patients in clinical practice
    corecore