156 research outputs found
The first report on detecting SARS-CoV-2 inside bacteria of the human gut microbiome: A case series on asymptomatic family members and a child with COVID-19
Many studies report the importance of using feces as source sample for detecting SARS-CoV-2 in patients with COVID-19 symptoms but who are negative to oropharyngeal/ nasopharyngeal tests. Here, we report the case of an asymptomatic child whose family members had negative results with the rapid antigen nasopharyngeal swab tests. The 21-month-old child presented with fever, diarrhea, bilateral conjunctivitis, and conspicuous lacrimation. In this study, analysis for the presence of SARS-CoV-2 in fecal samples by using Luminex technology allowed accurate detection of the presence of the viral RNA in the feces of the child and of all her relatives, which thus resulted to be positive but asymptomatic. It is the first time that SARS-CoV-2- is observed inside bacteria of the human gut microbiome and outside a matrix resembling extracellular bacterial lysates, in agreement with a bacteriophage mechanism with the images obtained by transmission electron microscopy (TEM), post-embedding immunogold, and by fluorescence microscope. In addition to the typical observations of respiratory symptoms, accurate evaluation of clinical gastrointestinal and neurological symptoms, combined with efficient highly sensitive molecular testing on feces, represent an efficient approach for detecting SARS-CoV-2, and for providing the correct therapy in challenging COVID-19 cases, like the one here reported
The first report on detecting SARS-CoV-2 inside human fecal-oral bacteria: A case series on asymptomatic family members and a child with COVID-19
Many studies report the importance of using feces as source sample for detecting SARS-CoV-2 in patients with COVID-19 symptoms but who are negative to oropharyngeal/ nasopharyngeal tests. Here, we report the case of an asymptomatic child whose family members had negative results with the rapid antigen nasopharyngeal swab tests. The 21-month-old child presented with fever, diarrhea, bilateral conjunctivitis, and conspicuous lacrimation. In this study, analysis for the presence of SARS-CoV-2 in fecal samples by using Luminex technology allowed accurate detection of the presence of the viral RNA in the feces of the child and of all her relatives, which thus resulted to be positive but asymptomatic. It is the first time that SARS-CoV-2- is observed inside human fecal-oral bacteria and outside a matrix resembling extracellular bacterial lysates, in agreement with a bacteriophage mechanism with the images obtained by transmission electron microscopy (TEM), post-embedding immunogold, and by fluorescence microscope. In addition to the typical observations of respiratory symptoms, accurate evaluation of clinical gastrointestinal and neurological symptoms, combined with efficient highly sensitive molecular testing on feces, represent an efficient approach for detecting SARS-CoV-2, and for providing the correct therapy in challenging COVID-19 cases, like the one here reported
Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells
The increase in the use of nanoparticles, as a promising tool for drug delivery or as a food additive, raises questions about their interaction with biological systems, especially in terms of evoked responses. In this work, we evaluated the kinetics of uptake of 44 nm (NP44) and 100 nm (NP100) unmodified polystyrene nanoparticles (PS-NPs) in gastric adenocarcinoma (AGS) cells, as well as the endocytic mechanism involved, and the effect on cell viability and gene expression of genes involved in cell cycle regulation and inflammation processes. We showed that NP44 accumulate rapidly and more efficiently in the cytoplasm of AGS compared to NP100; both PS-NPs showed an energy dependent mechanism of internalization and a clathrin-mediated endocytosis pathway. Dose response treatments revealed a non-linear curve. PS-NPs also affected cell viability, inflammatory gene expression and cell morphology. NP44 strongly induced an up-regulation of IL-6 and IL-8 genes, two of the most important cytokines involved in gastric pathologies. Our study suggests that parameters such as time, size and concentration of NPs must be taken carefully into consideration during the development of drug delivery systems based on NPs and for the management of nanoparticles associated risk factors
Synthesis of Chitosan-Coated Silver Nanoparticle Bioconjugates and Their Antimicrobial Activity against Multidrug-Resistant Bacteria
The increase in multidrug-resistant bacteria represents a true challenge in the pharmaceutical and biomedical fields. For this reason, research on the development of new potential antibacterial strategies is essential. Here, we describe the development of a green system for the synthesis of silver nanoparticles (AgNPs) bioconjugated with chitosan. We optimized a Prunus cerasus leaf extract as a source of silver and its conversion to chitosanâsilver bioconjugates (CH-AgNPs). The AgNPs and CH-AgNPs were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR), ultravioletâvisible spectroscopy (UVâVis), and zeta potential measurement (Z-potential). The cytotoxic activity of AgNPs and CH-AgNPs was assessed on Vero cells using the 3-[4.5-dimethylthiazol-2-yl]-2.5-diphenyltetrazolium bromide (MTT) cell proliferation assay. The antibacterial activity of AgNPs and CH-AgNPs synthesized using the green system was determined using the broth microdilution method. We evaluated the antimicrobial activity against standard ATCC and clinically isolated multisensitive (MS) and multidrug-resistant bacteria (MDR) Escherichia coli (E. coli), Enterococcus faecalis (E. faecalis), Klebsiella pneumonia (K. pneumoniae), and Staphylococcus aureus (S. aureus), using minimum inhibitory concentration (MIC) assays and the broth dilution method. The results of the antibacterial studies demonstrate that the silver chitosan bioconjugates were able to inhibit the growth of MDR strains more effectively than silver nanoparticles alone, with reduced cellular toxicity. These nanoparticles were stable in solution and had wide-spectrum antibacterial activity. The synthesis of silver and silver chitosan bioconjugates from Prunus cerasus leaf extracts may therefore serve as a simple, ecofriendly, noncytotoxic, economical, reliable, and safe method to produce antimicrobial compounds with low cytotoxicity
The U-shaped relationship between parental age and the risk of bipolar disorder in the offspring: A systematic review and meta-analysis
Parenthood age may affect the risk for the development of different psychiatric disorders in the offspring, including bipolar disorder (BD). The present systematic review and meta-analysis aimed to appraise the relationship between paternal age and risk for BD and to explore the eventual relationship between paternal age and age at onset of BD. We searched the MEDLINE, Scopus, Embase, PsycINFO online databases for original studies from inception, up to December 2021. Random-effects meta-analyses were conducted. Sixteen studies participated in the qualitative synthesis, of which k = 14 fetched quantitative data encompassing a total of 13,424,760 participants and 217,089 individuals with BD. Both fathers [adjusted for the age of other parent and socioeconomic status odd ratio - OR = 1.29(95%C.I. = 1.13-1.48)] and mothers aged †20 years [(OR = 1.23(95%C.I. = 1.14-1.33)] had consistently increased odds of BD diagnosis in their offspring compared to parents aged 25-29 years. Fathers aged ℠45 years [adjusted OR = 1.29 (95%C.I. = 1.15-1.46)] and mothers aged 35-39 years [OR = 1.10(95%C.I. = 1.01-1.19)] and 40 years or older [OR = 1.2(95% C.I. = 1.02-1.40)] likewise had inflated odds of BD diagnosis in their offspring compared to parents aged 25-29 years. Early and delayed parenthood are associated with an increased risk of BD in the offspring. Mechanisms underlying this association are largely unknown and may involve a complex interplay between psychosocial, genetic and biological factors, and with different impacts according to sex and age range. Evidence on the association between parental age and illness onset is still tentative but it points towards a possible specific effect of advanced paternal age on early BD-onset
Quality of residential facilities in Italy: satisfaction and quality of life of residents with schizophrenia spectrum~disorders
Background Recovery and human rights promotion for people with Schizophrenia Spectrum Disorders (SSDs) is fundamental to provide good care in Residential Facilities (RFs). However, there is a concern about rehabilitation ethos in RFs. This study aimed to investigate the care quality of Italian RFs, the quality of life (QoL) and care experience of residents with SSD. Methods Fourty-eight RFs were assessed using a quality assessment tool (QuIRC-SA) and 161 residents with SSD were enrolled. Seventeen RFs provided high intensity rehabilitation (SRP1), 15 medium intensity (SRP2), and 16 medium-low level support (SRP3). Staff-rated tools measured psychiatric symptoms and psychosocial functioning; user-rated tools assessed QoL and satisfaction with services. RFs comparisons were made using ANOVA and Chi-squared. Results Over two-thirds patients (41.5 y.o., SD 9.7) were male. Seventy-six were recruited from SRP1 services, 48 from SRP2, and 27 from SRP3. The lowest QuIRC-SA scoring was Recovery Based Practice (45.8%), and the highest was promotion of Human Rights (58.4%). SRP2 had the lowest QuIRC-SA ratings and SRP3 the highest. Residents had similar psychopathology (p = 0.140) and functioning (p = 0.537). SRP3 residents were more employed (18.9%) than SRP1 (7.9%) or SRP2 (2.2%) ones, and had less severe negative symptoms (p = 0.016) and better QoL (p = 0.020) than SRP2 residents. There were no differences in the RF therapeutic milieu and their satisfaction with care. Conclusions Residents of the lowest supported RFs in Italy had less severe negative symptoms, better QoL and more employment than others. The lowest ratings for Recovery Based Practice across all RFs suggest more work is needed to improve recovery
Identifying digital biomarkers of illness activity and treatment response in bipolar disorder with a novel wearable device (TIMEBASE):Protocol for a pragmatic observational clinical study
BackgroundBipolar disorder is highly prevalent and consists of biphasic recurrent mood episodes of mania and depression, which translate into altered mood, sleep and activity alongside their physiological expressions.AimsThe IdenTifying dIgital bioMarkers of illnEss activity and treatment response in BipolAr diSordEr with a novel wearable device (TIMEBASE) project aims to identify digital biomarkers of illness activity and treatment response in bipolar disorder.MethodWe designed a longitudinal observational study including 84 individuals. Group A comprises people with acute episode of mania (n = 12), depression (n = 12 with bipolar disorder and n = 12 with major depressive disorder (MDD)) and bipolar disorder with mixed features (n = 12). Physiological data will be recorded during 48 h with a research-grade wearable (Empatica E4) across four consecutive time points (acute, response, remission and episode recovery). Group B comprises 12 people with euthymic bipolar disorder and 12 with MDD, and group C comprises 12 healthy controls who will be recorded cross-sectionally. Psychopathological symptoms, disease severity, functioning and physical activity will be assessed with standardised psychometric scales. Physiological data will include acceleration, temperature, blood volume pulse, heart rate and electrodermal activity. Machine learning models will be developed to link physiological data to illness activity and treatment response. Generalisation performance will be tested in data from unseen patients.ResultsRecruitment is ongoing.ConclusionsThis project should contribute to understanding the pathophysiology of affective disorders. The potential digital biomarkers of illness activity and treatment response in bipolar disorder could be implemented in a real-world clinical setting for clinical monitoring and identification of prodromal symptoms. This would allow early intervention and prevention of affective relapses, as well as personalisation of treatment
Exploring digital biomarkers of illness activity in mood episodes:Hypotheses generating and model development study
Background: Depressive and manic episodes within bipolar disorder (BD) and major depressive disorder (MDD) involve altered mood, sleep, and activity, alongside physiological alterations wearables can capture. Objective: Firstly, we explored whether physiological wearable data could predict (aim 1) the severity of an acute affective episode at the intra-individual level and (aim 2) the polarity of an acute affective episode and euthymia among different individuals. Secondarily, we explored which physiological data were related to prior predictions, generalization across patients, and associations between affective symptoms and physiological data.Methods: We conducted a prospective exploratory observational study including patients with BD and MDD on acute affective episodes (manic, depressed, and mixed) whose physiological data were recorded using a research-grade wearable (Empatica E4) across 3 consecutive time points (acute, response, and remission of episode). Euthymic patients and healthy controls were recorded during a single session (approximately 48 h). Manic and depressive symptoms were assessed using standardized psychometric scales. Physiological wearable data included the following channels: acceleration (ACC), skin temperature, blood volume pulse, heart rate (HR), and electrodermal activity (EDA). Invalid physiological data were removed using a rule-based filter, and channels were time aligned at 1-second time units and segmented at window lengths of 32 seconds, as best-performing parameters. We developed deep learning predictive models, assessed the channelsâ individual contribution using permutation feature importance analysis, and computed physiological data to psychometric scalesâ items normalized mutual information (NMI). We present a novel, fully automated method for the preprocessing and analysis of physiological data from a research-grade wearable device, including a viable supervised learning pipeline for time-series analyses.Results: Overall, 35 sessions (1512 hours) from 12 patients (manic, depressed, mixed, and euthymic) and 7 healthy controls (mean age 39.7, SD 12.6 years; 6/19, 32% female) were analyzed. The severity of mood episodes was predicted with moderate (62%-85%) accuracies (aim 1), and their polarity with moderate (70%) accuracy (aim 2). The most relevant features for the former tasks were ACC, EDA, and HR. There was a fair agreement in feature importance across classification tasks (Kendall W=0.383). Generalization of the former models on unseen patients was of overall low accuracy, except for the intra-individual models. ACC was associated with âincreased motor activityâ (NMI>0.55), âinsomniaâ (NMI=0.6), and âmotor inhibitionâ (NMI=0.75). EDA was associated with âaggressive behaviorâ (NMI=1.0) and âpsychic anxietyâ (NMI=0.52).Conclusions: Physiological data from wearables show potential to identify mood episodes and specific symptoms of mania and depression quantitatively, both in BD and MDD. Motor activity and stress-related physiological data (EDA and HR) stand out as potential digital biomarkers for predicting mania and depression, respectively. These findings represent a promising pathway toward personalized psychiatry, in which physiological wearable data could allow the early identification and intervention of mood episodes
Butyrate Regulates Liver Mitochondrial Function, Efficiency, and Dynamics in Insulin-Resistant Obese Mice
Fatty liver, oxidative stress, and mitochondrial dysfunction are key pathophysiological features of insulin resistance and obesity. Butyrate, produced by fermentation in the large intestine by gut microbiota, and its synthetic derivative, the N-(1-carbamoyl-2-phenyl-ethyl) butyramide, FBA, have been demonstrated to be protective against insulin resistance and fatty liver. Here, hepatic mitochondria were identified as the main target of the beneficial effect of both butyrate-based compounds in reverting insulin resistance and fat accumulation in diet-induced obese mice. In particular, butyrate and FBA improved respiratory capacity and fatty acid oxidation, activated the AMPK-acetyl-CoA carboxylase pathway, and promoted inefficient metabolism, as shown by the increase in proton leak. Both treatments consistently increased utilization of substrates, especially fatty acids, leading to the reduction of intracellular lipid accumulation and oxidative stress. Finally, the shift of the mitochondrial dynamic toward fusion by butyrate and FBA resulted in the improvement not only of mitochondrial cell energy metabolism but also of glucose homeostasis. In conclusion, butyrate and its more palatable synthetic derivative, FBA, modulating mitochondrial function, efficiency, and dynamics, can be considered a new therapeutic strategy to counteract obesity and insulin resistance
Glucokinase Gene Mutations: Structural and Genotype-Phenotype Analyses in MODY Children from South Italy
BACKGROUND: Maturity onset diabetes of the young type 2 (or GCK MODY) is a genetic form of diabetes mellitus provoked by mutations in the glucokinase gene (GCK). METHODOLOGY/PRINCIPAL FINDINGS: We screened the GCK gene by direct sequencing in 30 patients from South Italy with suspected MODY. The mutation-induced structural alterations in the protein were analyzed by molecular modeling. The patients' biochemical, clinical and anamnestic data were obtained. Mutations were detected in 16/30 patients (53%); 9 of the 12 mutations identified were novel (p.Glu70Asp, p.Phe123Leu, p.Asp132Asn, p.His137Asp, p.Gly162Asp, p.Thr168Ala, p.Arg392Ser, p.Glu290X, p.Gln106_Met107delinsLeu) and are in regions involved in structural rearrangements required for catalysis. The prevalence of mutation sites was higher in the small domain (7/12: approximately 59%) than in the large (4/12: 33%) domain or in the connection (1/12: 8%) region of the protein. Mild diabetic phenotypes were detected in almost all patients [mean (SD) OGTT = 7.8 mMol/L (1.8)] and mean triglyceride levels were lower in mutated than in unmutated GCK patients (p = 0.04). CONCLUSIONS: The prevalence of GCK MODY is high in southern Italy, and the GCK small domain is a hot spot for MODY mutations. Both the severity of the GCK mutation and the genetic background seem to play a relevant role in the GCK MODY phenotype. Indeed, a partial genotype-phenotype correlation was identified in related patients (3 pairs of siblings) but not in two unrelated children bearing the same mutation. Thus, the molecular approach allows the physician to confirm the diagnosis and to predict severity of the mutation
- âŠ