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Butyrate Regulates Liver Mitochondrial Function,
Efficiency, and Dynamics in Insulin-Resistant Obese Mice
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Fatty liver, oxidative stress, and mitochondrial dysfunc-
tion are key pathophysiological features of insulin resis-
tance and obesity. Butyrate, produced by fermentation
in the large intestine by gut microbiota, and its synthetic
derivative, the N-(1-carbamoyl-2-phenyl-ethyl) butyra-
mide, FBA, have been demonstrated to be protective
against insulin resistance and fatty liver. Here, hepatic
mitochondria were identified as the main target of the
beneficial effect of both butyrate-based compounds in
reverting insulin resistance and fat accumulation in diet-
induced obese mice. In particular, butyrate and FBA
improved respiratory capacity and fatty acid oxidation,
activated the AMPK-acetyl-CoA carboxylase pathway,
and promoted inefficient metabolism, as shown by the in-
crease in proton leak. Both treatments consistently in-
creased utilization of substrates, especially fatty acids,
leading to the reduction of intracellular lipid accumula-
tion and oxidative stress. Finally, the shift of the mito-
chondrial dynamic toward fusion by butyrate and FBA
resulted in the improvement not only of mitochondrial
cell energy metabolism but also of glucose homeostasis.
In conclusion, butyrate and its more palatable synthetic
derivative, FBA, modulating mitochondrial function, effi-
ciency, and dynamics, can be considered a new therapeu-
tic strategy to counteract obesity and insulin resistance.

Obesity is a major risk factor for insulin resistance (IR)
and type 2 diabetes caused by an imbalance between energy
consumption and expenditure that leads to lipid accumula-
tion (1). The excessive energy intake and, particularly, the

inadequate fat processing may evoke complex biochemical
processes such as inflammation, oxidative stress, and im-
pairment of mitochondrial function (2). The liver plays a
central role in the development of obesity-associated meta-
bolic alterations. Indeed, hepatic mitochondrial dysfunction
can cause the alteration of fat oxidation, reactive oxygen
species (ROS) production, and oxidative stress (3). On the
one hand, the increase in ROS production is related to a
decrease in mitochondrial uncoupling (4,5). On the other
hand, the increase of mitochondrial uncoupling promotes
inefficient metabolism, creating an ineffective cycle of glu-
cose and fatty acid oxidation and generating heat instead of
ATP (6-8). Therefore, molecules able to modulate mitochon-
drial function and efficiency are advocated for the preven-
tion/treatment of obesity and IR (9).

Mitochondrial dynamics are closely regulated by fusion
and fission homeostasis (10,11), the imbalance of which
has been implicated in several metabolic disorders
(12-14). Mitochondrial fusion includes the involvement
of optic atrophy 1 (Opal) protein and mitofusin (Mfn)
1 and 2, whereas dynamin-related protein (Drp) 1 and
fission protein (Fis) 1 are involved in fission (15). A shift
toward fusion optimizes mitochondrial function and is
beneficial in the maintenance of long-term bioenergetic
capacity. Conversely, a shift toward fission leads to nu-
merous mitochondrial fragments, inducing the autophagy
of damaged mitochondria (14,16).

Short-chain fatty acids, the main products of intesti-
nal bacterial fermentation of dietary fibers, have been shown
to modulate lipid and glucose metabolism, exerting
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antiobesity and antidiabetic effects (17-19). Among these,
butyrate has been shown to prevent or treat diet-induced
IR in mice (20,21). The butyrate mechanism of action was
related to increase of energy expenditure and induction of
mitochondprial function in skeletal muscle and brown fat (20).

Butyrate exerts multiple effects by distinct mecha-
nisms; in particular, it acts as a signal molecule, interact-
ing with G protein-coupled receptors free fatty acid (FFA)
receptor 2 and 3 (22). Butyrate, as an inhibitor of histone
deacetylases activity, may epigenetically regulate gene ex-
pression in different diseases, including obesity and met-
abolic syndrome (23,24).

Indeed, some butyrate-based products are marketed,
but their spread is still very limited because the un-
pleasant taste and rancid smell of butyrate make its oral
administration aversive to patients. We previously dem-
onstrated that a synthetic more palatable derivative of
butyrate, N-(1-carbamoyl-2-phenyl-ethyl) butyramide (FBA),
improves glucose homeostasis and hepatic steatosis in rats
fed a high-fat diet (HFD), showing a comparable efficacy
with butyrate (21). Here, we have comparatively evaluated
the effects of sodium butyrate (butyrate) and FBA on liver
glucose metabolism and mitochondrial function, efficiency,
and dynamics in a mice model of obesity and IR.

RESEARCH DESIGN AND METHODS

Ethics Statement

All procedures involving animals and their care were
conducted in conformity with international and national
law and policies, including European Union (EU) Directive
2010/63/EU for animal experiments, Animal Research:
Reporting of In Vivo Experiments (ARRIVE) guidelines,
the Basel Declaration, and the National Centre for the
Replacement, Refinement & Reduction of Animals in Re-
search (NC3Rs) concept, and were approved by the Institu-
tional Committee on the Ethics of Animal Experiments (CSV)
of the University of Naples Federico I and by the Italian
Ministry of Health under protocol No. 2013/0040360.

Diets and Drugs

The standard diet (STD) had 17% from fat, without sucrose,
and the HFD (Teklad #93075), purchased from Harlan, had
45% of energy derived from fat and 7% sucrose. Butyrate
was purchased from Sigma-Aldrich (Milan, Italy), and FBA
(Italian patent RM2008A000214; April 21, 2008) was pro-
vided by Prof. Calignano (Department of Pharmacy, Uni-
versity of Naples Federico II).

In Vivo Experimental Procedure

Male C57BI/6 mice (Charles River Laboratories, Calco, Lecco,
Italy) were caged in a temperature-controlled room and
exposed to a daily 12 h light-12 h dark cycle with free access
to STD, unless stated, and drinking water. Young animals
(average weight, 26.05 * 0.62 g) were used. A group (n = 7)
was sacrificed at the beginning of the study to establish
baseline measurements. At the onset of the study, mice
were fed the STD or the 45% HFD. After 12 weeks, the
HFD mice were divided into three experimental groups
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(n = 7): HFD-fed animals and HFD-fed mice treated by
gavage with butyrate (100 mg/kg q.d.) or with FBA
(212.5 mg/kg q.d., the equimolecular dose of sodium bu-
tyrate). STD and HFD mice were orally treated with water
as vehicle. All treatments lasted 6 weeks. At the end of the
experiment, blood was collected from the inferior cava or
portal vein, and serum was obtained for the evaluation
of biochemical determinations. The liver was excised and
subdivided. Samples not immediately used for mitochon-
drial preparation were frozen and stored at —80°C for
subsequent determinations or were used for transmission
electron microscopy and stereology.

Serum and Hepatic Parameters and Oral Glucose
Tolerance Test

Serum alanine aminotransferase (ALT), triglycerides, and
cholesterol were measured by the colorimetric enzymatic
method using commercial kits (SGM Italia, Rome, Italy; and
Randox Laboratories Ltd., Crumlin, U.K.). Lipopolysaccharide
(LPS) was measured using the Limulus amebocyte lysate (LAL
QCL-1000; Lonza Group Ltd., Basel, Switzerland) technique.
Serum interleukin (IL)-1B and IL-10 (Thermo Fisher Scien-
tific, Rockford, IL), tumor necrosis factor-a (TNF-a) and
monocyte chemoattractant protein 1 (MCP-1) (Biovendor
R&D, Brmo, Czech Republic), adiponectin and leptin (B-Bridge
International, Mountain View, CA), insulin (cat. no. EZRMI-
13K; Millipore, Darmstadt, Germany), and hepatic TNF-oc and
IL-1B were measured using commerdially available ELISA kits.
As an index of IR, HOMA-IR was calculated (HOMA-IR =
fasting glucose [mmol/L] X fasting insulin [nU/mL]/22.5).
In another set of experiments 1 week before mice were
killed, an oral glucose tolerance test (OGTT) was measured
in mice fasted overnight, as previously described (25).

Body Composition and Energy Balance

Body weight and food intake were monitored daily to
obtain body weight gain and gross energy intake. Energy
balance assessments were conducted during the 18 weeks
of feeding by the comparative carcass evaluation (26). The
gross energy density for the STD or HFD (15.8 or 21.9
kJ/g, respectively) and the energy density of the feces and
the carcasses was determined by bomb calorimetric (Parr
adiabatic calorimetric; Parr Instrument Co., Moline, IL).
Metabolizable energy (ME) intake was determined by sub-
tracting the energy measured in feces and urine from the
gross energy intake, which was determined from the daily
food consumption and gross energy density. Energy effi-
ciency was calculated as the percentage of body energy
retained per ME intake, and energy expenditure was de-
termined as the difference between ME intake and energy
gain.

Mitochondrial Parameters and Basal and Inducible
Proton Leak

Mitochondrial isolation, oxygen consumption, and proton
leakage measurements were performed as previously re-
ported (27). Oxygen consumption was polarographically
measured using a Clark-type electrode in the presence of
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substrates and ADP (state 3) or with substrates alone
(state 4), and the respiratory control ratio was calculated.
Mitochondrial proton leakage was assessed by a titration
of the steady-state respiration rate as a function of the
mitochondrial membrane potential in liver mitochondria.
The specific activity of the carnitine palmitoyltransferase
(CPT) system, aconitase, and superoxide dismutase was
measured spectrophotometrically, as previously reported
(28-30). The rate of mitochondrial H,O, release was
assayed by measuring the linear increase in fluorescence
caused by the oxidation of homovanillic acid in the pres-
ence of horseradish peroxidase (31). Mitochondrial pro-
tein mass was assessed according to Srere (32).

Redox Status and Nrf2-Activated Enzyme Activities
Reduced glutathione (GSH) and oxidized glutathione (GSSG)
concentrations in the liver were measured with the dithio-
nitrobenzoic acid-GSSG reductase recycling assay (33); the
GSH-to-GSSG ratio was used as an oxidative stress marker.
To investigate the possible involvement of NF-E2-related
factor 2 (Nrf2) in the diet-induced stress, cytoplasmic ex-
tracts were prepared from rat liver. The enzymatic activities
of glutathione S-transferases (GSTs) and quinone oxidore-
ductase (NQO1) were evaluated spectrophotometrically in
liver cytoplasmic extracts (32,34-36).

Western Blot Analysis

Blots were probed with anti-phosphorylated AMPK-a (cat
no. 2535), AMPK-a (cat no. 2532), phosphorylated acetyl-
CoA carboxylase (ACC; cat. no. 11818), ACC (cat no. 3676),
insulin receptor (cat no. 3025), and phosphorylated AKT
(cat no. 4060; Cell Signaling Technology, Danvers, MA),
AKT (cat no. sc-5298; Santa Cruz Biotechnology, Dallas,
TX), phosphorylated insulin receptor (cat no. 44-800G;
Thermo Fisher Scientific, Waltham, MA), and GLUT2 (cat no.
07-1402; Millipore, Temecula, CA). Western blot for 3-actin
(cat no. A5441) and a-tubulin (cat no. T 9026; Sigma-Aldrich)
was performed to ensure equal sample loading,

Real-time PCR Analysis

Total RNA was extracted from liver using the TRIzol reagent
(Ambion). After DNase treatment, RNA was quantified and
reverse-transcribed (1 pg) using the Advantage RT-PCR kit
(Clontech). For the evaluation of mitochondrial fission
and fusion gene transcription, we used murine primers, as
follows: Mfnl: TCTCCAAGCCCAACATCTTCA (forward), ACT
CCGGCTCCGAAGCA (reverse); Mfm2: ACAGCCTCAGCCGA
CAGCAT (forward), TGCCGAAGGAGCAGACCTT (reverse);
Drpl: GCGCTGATCCCGCGTCAT (forward), CCGCACCCA
CTGTGTTGA (reverse); Opal: TGGGCTGCAGAGGATGGT
(forward), CCTGATGTCACGGTGTTGATG (reverse); Fisl:
GCCCCTGCTACTGGACCAT (forward), CCCTGAAAGCCTCA
CACTAAGG (reverse); and B-Actin: ACGGCCAGGTCATCAC
TATTC (forward), AGGAAGGCTGGAAAAGAGCC (reverse);
evaluations were performed as previously described (37).
We used mouse primers for Tnf, 6, and Gapdh, purchased
from Qiagen (Hilden, Germany), to evaluate the transcrip-
tion of inflammatory mediators (38).
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Transmission Electron Microscopy and Stereology
Liver slices were cut into ~1 mm® fragments, fixed by
immersion in 2.5% glutaraldehyde, 2.5% paraformalde-
hyde in phosphate buffer (0.1 mol/L, pH 7.4) for 2 h at
room temperature, postfixed with 1% osmium tetroxide
in 0.1 mol/L phosphate buffer for 2 h at 4°C, dehydrated
through graded alcohols (50, 70, 90, and 100%) and pro-
pylene oxide, and then embedded in Epon 812 resin (48 h
at 60°C). Ultrathin (70 nm thick) sections were cut on a
Sorvall Porter-Blum ultramicrotome and examined on a
Philips 208S transmission electron microscope. Micro-
graphs were acquired with a Mega View II Soft Imaging
System. For each experimental group, 30 random images
were taken at original magnification X25,000 for mitochon-
dria investigation and at original magnification X4,000 for
lipid investigation. We used the point-sampling technique
of classic stereology to measure mitochondrial density and
lipid volume density (39,40). Briefly, a grid with equally and
symmetrically spaced intersection points was overlaid on
each micrograph using ImageJ 1.50 software (National In-
stitutes of Health). Mitochondrial and lipid volume density
was calculated as the ratio of points overlapping the cellular
compartment of interest and the total number of grid points
overlapping the cytoplasm area. The values are expressed as
the percentage *= SEM.

Mitochondrial morphological characteristics were quan-
tified: mitochondrial area, aspect ratio (the ratio between
the major and minor axis of the ellipse equivalent to the
mitochondrion), degree of branching or form factor (defined
as [Pm?]/[4mAm], where Pm is the length of mitochondrial
outline and Am is the area of mitochondrion), mitochondrial
density (N/ Mm2), and coverage (percentage of cytosol). For
mitochondrial area, 400 mitochondria/sample were counted,;
for other parameters, 10 photos/sample were analyzed.

Cell Culture

Human Hep G2 cells (American Type Culture Collection,
Manassas, VA) were cultured in RPMI 1640 medium sup-
plemented with 10% FBS and 1% antibiotics (100 units/mL
penicillin and streptomycin) at 37°C with 5% CO..

Hep G2 cells, starved in serum-free medium for 16 h,
were incubated with insulin (100 nmol/L) or its vehicle
for 24 h to obtain IR and control cells, respectively (41).
To evaluate butyrate effect, control and IR cells were si-
multaneously treated with sodium butyrate (1 mmol/L).
After 24 h, cells were washed and then challenged with
100 nmol/L insulin for 10 min to determine the insulin
signaling pathway or 6 h for GLUT2 determination.

Statistical Analysis

Data are presented as the means * SEM unless otherwise
indicated. Differences among groups were compared
by ANOVA, followed by the Newman-Keuls test for
multiple comparisons. Differences were considered sta-
tistically significant at P < 0.05. Analyses were per-
formed using GraphPad Prism (GraphPad Software,
La Jolla, CA).
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RESULTS

Butyrate and FBA Reduced Lipid Accumulation,
Lowering Body Energy Efficiency and Increasing
Energy Expenditure

The mean body weight of all mice groups, measured during
the entire experimental period, is shown in Fig. 1A. HFD
feeding clearly led to a significant increase in body weight
throughout the experiment. Butyrate or FBA treatment,
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starting at week 12, significantly reduced body weight.
These data were confirmed by the area under curve
(AUC) of body weight, calculated from 12 to 18 weeks
(Fig. 1B). Evaluation of body water revealed a decrease in
HFD-fed mice that was partially restored only in the FBA
group (Fig. 1C). Moreover, we found that HFD-fed animals
exhibited an increase in body lipids percentage and energy,
which was partially reverted by butyrate and to a larger
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Figure 1—Butyrate and FBA treatment induced body weight modification and composition in diet-induced obese mice. Body weight
measured throughout the experimental period (A) and AUC of body weight during the study period (12 to 18 weeks) (B). Body water (C), lipid
(D), and protein (E) percentages and energy in kd (F) are reported. Data are presented as means + SEM from n = 7 animals/group. Labeled

means without a common letter differ, P < 0.05.
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extent by FBA (Fig. 1D and F). No variation was observed
in body protein content (Fig. 1E).

All groups fed the HFD showed a similar energy intake
(data not shown); however, when this parameter is
reported as kJ/100 g mice/week (Fig. 24A), it resulted in
an increase in butyrate- and FBA-treated mice. Fecal en-
ergy decreased in all HFD groups (Fig. 2B), and no differ-
ence was reported in urine energy among all groups (data
not shown). All HFD-fed groups showed a similar ME
intake higher than the STD-fed mice (Fig. 2C). In the
HFD group, we found an increase in body weight gain
(Fig. 2D), lipid gain (Fig. 2E), and lipid gain/ME intake
(Fig. 2F) compared with the STD group, and all of these
parameters were reduced by butyrate and more deeply by
FBA. Butyrate and FBA showed a significant reduction in
energy efficiency compared with HED mice (Fig. 2H) and a
significant increase in energy expenditure (Fig. 2G). Proba-
bly, the strongest effect of FBA on body lipids was related to
a lower energy efficiency (Fig. 2H). No modification was
shown in protein gain or protein gain/ME intake (Fig. 2I
and J). Taken together, these data indicate that butyrate-
and FBA-treated mice had an improved capability to utilize
fat as a metabolic fuel.

Butyrate and Its Derivative, FBA, Modulated Serum
and Hepatic Inflammatory Markers and Metabolic
Parameters

Serum triglycerides, cholesterol, and ALT were signifi-
cantly increased by the HFD compared with the STD and
were reduced by butyrate and FBA (Fig. 3A and B). Sim-
ilarly, the hormonal profile altered by the HFD was im-
proved by both butyrate-based treatments, as shown by
leptin and adiponectin serum levels (Fig. 3C and D). The
increased proinflammatory serum markers, such as TNF-a,
MCP-1, and IL-1f were significantly reduced in butyrate-
treated animals and even more by FBA (Fig. 3E-G). Con-
sistently, the highest endotoxemia found in the HFD
mice was reduced by both treatments (Fig. 3H). The anti-
inflammatory effect of butyrate and FBA was also shown
at the hepatic level on the cytokine transcription and pro-
tein level (Fig. 3I-M).

Butyrate and FBA Improve Insulin Sensitivity and
Glucose Homeostasis

Glucose tolerance and IR were studied to analyze the
effects of butyrate and FBA on glucose homeostasis in
HFD-fed mice. As expected, the HFD induced a marked
and significant increase of glycemia in the OGTT (P <
0.001) and AUC values, which was significantly reduced
by butyrate and FBA (Fig. 4A). Butyrate and FBA groups
exhibited improved tolerance to glucose at all time points.
No difference in fat mass and body weight was evidenced
in STD mice treated or not with butyrate-based com-
pounds (data not shown). Conversely, glucose tolerance
was improved in butyrate-treated STD mice, evaluated as
AUC values expressed as glucose/min (18,525 * 642 bu-
tyrate and 19,871 = 575 FBA vs. 21,150 = 573 STD).
Compared with STD mice, HFD mice showed a marked
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increase in fasting glucose and insulin level prevented by
both butyrate and FBA (Fig. 4B and C, respectively), im-
proving HOMA-IR (Fig. 4D). Furthermore, the evaluation
of the AMPK-a/ACC pathway activation in liver revealed a
marked upregulation in the phosphorylated AMPK protein
and its downstream substrate ACC both in butyrate- and
FBA-treated mice (Fig. 4E and F). Both treatments similarly
induced an increase in AKT phosphorylation compared with
HFD mice as well as an upregulation of GLUT2 expression
markedly reduced by the HFD (Fig. 4G and H).

To address the direct effect of butyrate on hepatic insulin
sensitivity, we evaluated the modulation of insulin signaling
and GLUT?2 expression altered by the induction of IR in human
Hep G2 cells. We have demonstrated that butyrate increases
the phosphorylation of insulin receptor and Akt, as well as
GLUT?2 expression, after insulin stimulation (Fig. 4I-K).

Mitochondrial Efficiency and Oxidative Stress
Modulation by Butyrate-Based Treatments
Mitochondrial state 3 respiration, evaluated using succi-
nate as the substrate, was decreased in HFD-fed animals
compared with the other groups (Fig. 54). To study fatty
acid oxidation, state 3 respiration was evaluated using
palmitoyl-carnitine as the substrate; butyrate and FBA
increased oxygen consumption compared with STD and
HFD groups (Fig. 5B). No variation was observed in mi-
tochondrial state 4 respiration among all groups using
succinate or palmitoyl-carnitine substrate (Fig. 5A and
B, respectively) and in CPT activity (Fig. 5C). High quality
of mitochondrial preparations was indicated by high respi-
ratory control ratio values in all groups (data not shown).

As depicted in Fig. 5D, the specific activity of citrate
synthase, significantly reduced compared with controls in
HFD liver homogenates, was increased by butyrate and
restored by FBA. Conversely, citrate synthase activity in
isolated liver mitochondria was similar in all groups. Inter-
estingly, mitochondrial protein contents, calculated as the
ratio between citrate synthase activity in the homogenate
and isolated mitochondria, was significantly lower in the
HFD group compared with all groups, and butyrate and,
even more, FBA significantly increased this parameter
(Fig. 5D).

In mitochondrial basal conditions or after FFA stimu-
lation, HFD showed the lowest proton leak, which was
increased by butyrate and FBA compared with STD and
HEFD (Fig. 5E and F). In particular, mice treated with both
formulations exhibited the highest oxygen consumption
to maintain the same membrane potential among the
groups (Fig. S5E). Regarding FFA-induced proton leak, FBA
mice showed a better efficacy than butyrate mice (Fig. 5F).

Next, H,0, yield and ROS-induced damage were mea-
sured in isolated mitochondria. The H,O5 yield was in-
creased in the HFD group compared with the STD
group and was significantly decreased in butyrate- and
FBA-treated mice (Fig. 5G). Similarly, HFD mice showed
a lower aconitase activity, which was increased by bu-
tyrate or FBA (FBA > butyrate) (Fig. 5H).
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Figure 2—Butyrate and FBA treatments reduced body weight gain, lipid gain, and energy efficiency in diet-induced obese mice. Gross
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Antioxidant/Detoxifying Effect by Butyrate-Based
Treatments

Antioxidant state and cytoprotective enzyme activity were
improved by butyrate or FBA administration (Fig. 6). Nrf2
is considered the main mediator of cellular adaptation to
redox stress, and its translocation into the nucleus, upon
the dissociation from the Kelch-like ECH-associated pro-
tein 1 (Keapl), triggers the transcription of several en-
zymes involved in detoxification and chemopreventive
mechanisms (GSTs, NAD[P]H, NQO1). In particular,
NQO71 and GST activity, as well as GSH level, were signif-
icantly lower in HFD mice compared with STD mice.
Butyrate treatment increased all parameters, and this
effect was more marked in FBA-treated mice (Fig. 6A-C).
GSSGs were higher in all HFD-fed groups compared with
STD-fed groups (Fig. 6D). The beneficial effects on liver
redox status induced by butyrate, and more markedly by
FBA treatment, were clearly indicated by the significant
increase of the GSH-to-GSSG ratio (Fig. 6E).

Electron Microscopy and Modulation of Lipid

Content by Butyrate-Based Treatments

Lipid droplets were evident in the liver sections of all HFD
groups; however, their size and content in the HED groups

were higher than in the treated groups (Fig. 7A). Consis-
tently, stereology investigations revealed that lipid density
was significantly decreased compared with HFD mice in the
butyrate groups and even more in FBA groups (Fig. 70).

In the liver of the HFD mice, mitochondrial dumbbell-
shaped and fission pictures are evident, while an ongoing
fusion event is shown in butyrate-treated mice; giant and
elongated mitochondria, resulting from fusion, are recog-
nizable in the FBA group (Fig. 7B). Mitochondrial area
and volume density were significantly lower in the HFD
group compared with the other groups (Fig. 7D and E).
The mitochondrial aspect ratio (the length of mitochon-
dria), density, and form factor (an index of the degree of
mitochondrial branching) were significantly increased in
HFD mice compared with all other groups (Fig. 7F-H).
Finally, mitochondrial coverage (percentage of cytosol) re-
sults were significantly decreased in HFD and butyrate livers
and recovered in FBA (Fig. 7I). The increased mitochondrial
volume density showed by butyrate and FBA was probably
associated to the decreased lipid compartment.

Effect of Butyrate and FBA on Mitochondrial Dynamics
Mitochondrial dynamics, fission and fusion, is a metabolic
process dedicated to cell energy demand modulation. As
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shown in Fig. 8A-C, we found a significant reduction in
fusion protein mRNAs, namely, Mfnl, Mfn2, and Opal, in
the liver from HFD mice compared with STD mice, and a
significant increase in their transcription was revealed in
butyrate- or FBA-treated animals. The transcription of
fission proteins Drpl and Fis1 was consistently reduced
in butyrate- or FBA-treated mice, as shown in Fig. 8D and
E, respectively.

DISCUSSION

The main finding of this study is that the administration
of butyrate or FBA in mice fed the HFD reduces hepatic
fat accumulation and decreases metabolic/mitochondrial
efficiency, counteracting obesity, IR, and inflammation. A
relevant role for hepatic mitochondria has been evidenced,

as the main target of diet-induced alterations in function,
efficiency, and dynamics, associated to an increase of oxida-
tive stress and inhibition of the Nrf2 pathway.

The HFD increases metabolic efficiency, weight gain,
and body lipid levels, leading to metabolic alterations,
such as dyslipidemia and IR, associated with low-grade
inflammation. Despite comparable ME intake in all mice
fed the HED, we found a reduction in metabolic efficiency,
body weight, and body lipid levels after butyrate and FBA
treatments. The butyrate and FBA effects on body weight
and lipids can be at least partly explained by an increase in
energy expenditure and reduced energy efficiency. Butyrate
and FBA improve the ability to utilize fat as a metabolic fuel,
suggesting that the large part of the higher energy intake
was dissipated through increased metabolic activity.
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Butyrate and FBA attenuated HFD-induced alteration of
lipid and hormonal profiles, restoring glucose homeostasis
and liver GLUT2 expression and reducing inflammation.
Both treatments also counteracted adiponectin and leptin
alterations, adipokines that are inversely involved in glucose
and lipid metabolism, through AMPK activation (42,43).
Our results showed decreased serum leptin levels in
butyrate- and FBA-treated mice, consistent with fat
mass reduction, and serum adiponectin levels restored
to those of STD mice, associated with AMPK/ACC path-
way activation and fatty acid metabolism in the liver.
Notably, the activation of AMPK exhibits multiple effects,

including a reduction in inflammation, oxidative stress, and
IR and an increase in lipid metabolism (43,44). The anti-
inflammatory effect of butyrate and FBA at the hepatic level
could also be ascribed to a reduction in gut leakage, as sug-
gested by the reduction of LPS levels in portal blood, in
accordance with our recent findings showing that both
butyrate-based compounds restored gut integrity in mice
with dextran sulfate sodium-induced colitis (45), contributing
to immune tolerance (46). Our previous data demonstrated
that butyrate and FBA, in rats fed the HFD, reduced hepatic
proinflammatory parameters via suppression of Toll-like re-
ceptors and nuclear factor-kB activation in the liver (21).
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Furthermore, we address the direct effect of butyrate
on hepatocyte insulin sensitivity, demonstrating the reversal
of IR in insulin-stimulated Hep G2 cells through the restora-
tion of hormone signaling and GLUT?2 expression.

Our data confirm the association between HFD-induced
ectopic fat storage in the liver and alterations in the
mitochondrial compartment (47). Accordingly, liver mito-
chondria from the HFD mice exhibited reduced mitochon-
drial protein mass, area, volume density, and respiratory
capacity and increased oxidative stress, even when the
ability to utilize palmitoyl-carnitine as a fat metabolic
fuel was unchanged. However, unchanged lipid oxidation
is likely not sufficient to counteract the increased FFA

overload, leading to the increase of hepatic ectopic lipid
storage, as shown by stereology analysis. Moreover, a fur-
ther mechanism converging to fat accumulation is related
to the increase in mitochondrial efficiency, as shown by
the decrease in proton leak in the HFD mice. Therefore,
the observed higher mitochondrial efficiency is suggestive
of a reduced amount of substrate to be burned to obtain
ATP. Moreover, increased mitochondrial oxidative stress
was found in HFD mice, as shown by H,O, yield, aconi-
tase activity, and the GSH-to-GSSG ratio. All of these
effects can be attributable to the concomitant increase
in NADH and flavin adenine dinucleotide generation,
and thus, electron delivery to the respiratory chain, as a
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Figure 8—Effect of butyrate and FBA on mitochondrial fusion and fission gene transcription. The expression level of the genes Mfn1 (A),
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P < 0.05.

result of the diet-induced increase of FFA uptake associ-
ated to respiratory chain impairment. The decrease in
succinate state 3 oxygen consumption partially blocks
electron flow within the respiratory chain. Moreover,
the decreased proton leak can contribute to excessive
ROS formation in HFD mice. In fact, one of the postu-
lated roles of uncoupling is known to be the maintenance
of mitochondrial membrane potential below the critical
threshold for ROS production (48,49).

The protective effect of butyrate and FBA on liver IR
may be the result of multiple mechanisms: the increase in
mitochondrial protein mass, area, and volume density, the
improvement of respiratory capacity and fatty acid oxi-
dation, and the decrease in mitochondrial efficiency, in
accordance with the decrease in body metabolic efficiency
and the increase in energy expenditure. Moreover, the
Nrf2-mediated adaptive response triggered by mild oxi-
dative stress has been reported as a key protective mechanism
against several toxic insults (50). We provide indirect evidence
that butyrate and FBA improve liver redox status and cyto-
protective defenses through a typical adaptive response.

Morphological parameters analysis indicates that the
HFD presents mitochondrial alterations that were often
restored by butyrate and FBA treatment. The recovery of
glucose homeostasis by butyrate and FBA may be also
related to the modification of mitochondrial dynamics. In
particular, the fusion process is consistently related to an
improvement of IR (14,16). Notably, here butyrate and FBA
modulate the proteins involved in mitochondrial dynamics,

indicating a clear shift toward the fusion process (MFN1,
MEN2, and OPA1), associated with a decrease in DRP1 and
FIS1, which are generally transcribed during fission. All
these proteins were similarly modulated by butyrate and
FBA and even more by FBA for MEN2. This latter protein
controls not only mitochondrial cell energy metabolism but
also insulin signaling by limiting ROS production (14) and is
stringently modulated by several factors. In fact, proinflam-
matory cytokines and lipid availability reduced its expres-
sion, whereas exercise and increased energy expenditure
promoted its upregulation (14,51). These results on mito-
chondrial dynamics were also confirmed by electron micros-
copy, where clear fission mitochondria were observed in
HED livers, whereas giant and elongated mitochondria, pe-
culiar to fusion, were revealed in butyrate groups. Actually,
mitochondrial fusion and uncoupling are two protective
mechanisms that reduce oxidative stress, improve mitochon-
dria health and function, and are both modulated by buty-
rate and FBA. In mitochondrial dynamics, a shift toward
fusion maintains a long-term bioenergetic capacity because
it favors the generation of interconnected mitochondria,
responsible for uncoupling effect that contributes to the
rapid energy dissipation. Conversely, a shift toward fission
results in numerous mitochondrial fragments, where the
mix of the matrix and the inner membrane allows the re-
spiratory machinery components to cooperate most
efficiently. Bach et al. (52) consistently demonstrated a
decreased mitochondrial proton leak and increased bioen-
ergetics efficiency in Mfn2-depleted cells. Moreover, Mfn2
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loss of function enhanced bioenergetic efficiency and con-
tributed to obesity development by reducing energy expen-
diture and increasing fat energy store (16). Indeed, the
complete mechanisms of mitochondrial dynamics are still
far from being understood. Very recently, the direct relation
between the increase in fusion and IR/obesity has been
evidenced, possibly identifying the mitochondrial fission
as an adaptive mechanism to cope with lipid overflow (53).
In conclusion, butyrate and FBA promote inefficient
metabolism, generating heat instead of ATP, increasing
lipid oxidation, activating the AMPK/ACC pathway, re-
ducing ROS generation, and modulating mitochondrial
efficiency and dynamics; therefore, they reduce fat mass,
inflammation, and IR associated with fat overnutrition.
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