141 research outputs found

    Multiple system atrophy

    Get PDF
    This is a practical guide to diagnosing and managing multiple system atrophy (MSA). We explain the newly published Movement Disorders Society Consensus Diagnostic Criteria, which include new ‘Clinically Established MSA’ and ‘Possible Prodromal MSA’ categories, hopefully reducing time to diagnosis. We then highlight the key clinical features of MSA to aid diagnosis. We include a list of MSA mimics with suggested methods of differentiation from MSA. Lastly, we discuss practical symptom management in people living with MSA, including balancing side effects, with the ultimate aim of improving quality of life

    Supracubital perineurioma misdiagnosed as carpal tunnel syndrome: case report

    Get PDF
    BACKGROUND: Perineuriomas have been defined as tumorous lesions of the peripheral nerves which derive from perineurial cell proliferation and may be associated with abnormalities on chromosome 22. CASE PRESENTATION: Three years after a painful cubital vein procaine injection, a 33 year-old man developed a median nerve lesion, initially diagnosed as carpal tunnel syndrome. Symptoms progressed despite appropriate surgery. Clinical and electrophysiological re-evaluation revealed a fusiform mass at the distal upper arm, confirmed by MRI. Immunohistochemical studies classified the tumor as a mixed perineurioma and neuroma. CONCLUSIONS: Perineurioma mixed with neuroma may potentially caused by the previous trauma or cytotoxic effects of procaine

    FAS-dependent cell death in α-synuclein transgenic oligodendrocyte models of multiple system atrophy

    Get PDF
    Multiple system atrophy is a parkinsonian neurodegenerative disorder. It is cytopathologically characterized by accumulation of the protein p25α in cell bodies of oligodendrocytes followed by accumulation of aggregated α-synuclein in so-called glial cytoplasmic inclusions. p25α is a stimulator of α-synuclein aggregation, and coexpression of α-synuclein and p25α in the oligodendroglial OLN-t40-AS cell line causes α-synuclein aggregate-dependent toxicity. In this study, we investigated whether the FAS system is involved in α-synuclein aggregate dependent degeneration in oligodendrocytes and may play a role in multiple system atrophy. Using rat oligodendroglial OLN-t40-AS cells we demonstrate that the cytotoxicity caused by coexpressing α-synuclein and p25α relies on stimulation of the death domain receptor FAS and caspase-8 activation. Using primary oligodendrocytes derived from PLP-α-synuclein transgenic mice we demonstrate that they exist in a sensitized state expressing pro-apoptotic FAS receptor, which makes them sensitive to FAS ligand-mediated apoptosis. Immunoblot analysis shows an increase in FAS in brain extracts from multiple system atrophy cases. Immunohistochemical analysis demonstrated enhanced FAS expression in multiple system atrophy brains notably in oligodendrocytes harboring the earliest stages of glial cytoplasmic inclusion formation. Oligodendroglial FAS expression is an early hallmark of oligodendroglial pathology in multiple system atrophy that mechanistically may be coupled to α-synuclein dependent degeneration and thus represent a potential target for protective intervention

    Functional correlates of Apolipoprotein E genotype in Frontotemporal Lobar Degeneration

    Get PDF
    BACKGROUND: It has been recently demonstrated that in Frontotemporal Lobar Degeneration (FTLD) memory deficits at presentation are commoner than previously thought. Apolipoprotein E (ApoE) genotype, the major genetic risk factor in sporadic late-onset Alzheimer Disease (AD), modulates cerebral perfusion in late middle-age cognitively normal subjects. ApoE ε4 homozygous have reduced glucose metabolism in the same regions involved in AD. The aim of this study was to determine whether ApoE genotype might play a key-role in influencing the cerebral functional pattern as well as the degree of memory deficits in FTLD patients. METHODS: Fifty-two unrelated FTLD patients entered the study and underwent a somatic and neurological evaluation, laboratory examinations, a brain structural imaging study, and a brain functional Single Photon Emission Tomography study. ApoE genotype was determined. RESULTS: ApoE genotype influenced both clinical and functional features in FTLD. ApoE ε4-carriers were more impaired in long-term memory function (ApoE ε4 vs. ApoE non ε4, 6.3 ± 3.9 vs. 10.1 ± 4.2, p = 0.004) and more hypoperfused in uncus and parahippocampal regions (x,y,z = 38,-6,-20, T = 2.82, cluster size = 100 voxels; -32,-12,-28, T= 2.77, cluster size = 40 voxels). CONCLUSION: The present findings support the view that ApoE genotype might be considered a disease-modifying factor in FTLD, thus contributing to define a specific clinical presentation, and might be of relevance for pharmacological approaches

    Spatial patterns of the tau pathology in progressive supranuclear palsy

    Get PDF
    Progressive supranuclear palsy (PSP) is characterized neuropathologically by neuronal loss, gliosis, and the presence of tau-immunoreactive neuronal and glial cell inclusions affecting subcortical and some cortical regions. The objectives of this study were to determine (1) the spatial patterns of the tau-immunoreactive pathology, viz., neurofibrillary tangles (NFT), oligodendroglial inclusions (GI), tufted astrocytes (TA), and Alzheimer's disease-type neuritic plaques (NP) in PSP and (2) to investigate the spatial correlations between the histological features. Post-mortem material of cortical and subcortical regions of eight PSP cases was studied. Spatial pattern analysis was applied to the NFT, GI, TA, NP, abnormally enlarged neurons (EN), surviving neurons, and glial cells. NFT, GI, and TA were distributed either at random or in regularly distributed clusters. The EN and NP were mainly randomly distributed. Clustering of NFT and EN was more frequent in the cortex and subcortical regions, respectively. Variations in NFT density were not spatially correlated with the densities of either GI or TA, but were positively correlated with the densities of EN and surviving neurons in some regions. (1) NFT were the most widespread tau-immunoreactive pathology in PSP being distributed randomly in subcortical regions and in regular clusters in cortical regions, (2) GI and TA were more localized and exhibited a regular pattern of clustering in subcortical regions, and (3) neuronal and glial cell pathologies were not spatially correlated. © 2012 Springer-Verlag

    Clonal mutations in primary human glial tumors: evidence in support of the mutator hypothesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A verifiable consequence of the mutator hypothesis is that even low grade neoplasms would accumulate a large number of mutations that do not influence the tumor phenotype (clonal mutations). In this study, we have attempted to quantify the number of clonal mutations in primary human gliomas of astrocytic cell origin. These alterations were identified in tumor tissue, microscopically confirmed to have over 70% neoplastic cells.</p> <p>Methods</p> <p>Random Amplified Polymorphic DNA (RAPD) analysis was performed using a set of fifteen 10-mer primers of arbitrary but definite sequences in 17 WHO grade II astrocytomas (low grade diffuse astrocytoma or DA) and 16 WHO grade IV astrocytomas (Glioblastoma Multiforme or GBM). The RAPD profile of the tumor tissue was compared with that of the leucocyte DNA of the same patient and alteration(s) scored. A quantitative estimate of the overall genomic changes in these tumors was obtained by 2 different modes of calculation.</p> <p>Results</p> <p>The overall change in the tumors was estimated to be 4.24% in DA and 2.29% in GBM by one method and 11.96% and 6.03% in DA and GBM respectively by the other. The difference between high and lower grade tumors was statistically significant by both methods.</p> <p>Conclusion</p> <p>This study demonstrates the presence of extensive clonal mutations in gliomas, more in lower grade. This is consistent with our earlier work demonstrating that technique like RAPD analysis, unbiased for locus, is able to demonstrate more intra-tumor genetic heterogeneity in lower grade gliomas compared to higher grade. The results support the mutator hypothesis proposed by Loeb.</p

    Mesenchymal Stem Cells in a Transgenic Mouse Model of Multiple System Atrophy: Immunomodulation and Neuroprotection

    Get PDF
    Mesenchymal stem cells (MSC) are currently strong candidates for cell-based therapies. They are well known for their differentiation potential and immunoregulatory properties and have been proven to be potentially effective in the treatment of a large variety of diseases, including neurodegenerative disorders. Currently there is no treatment that provides consistent long-term benefits for patients with multiple system atrophy (MSA), a fatal late onset α-synucleinopathy. Principally neuroprotective or regenerative strategies, including cell-based therapies, represent a powerful approach for treating MSA. In this study we investigated the efficacy of intravenously applied MSCs in terms of behavioural improvement, neuroprotection and modulation of neuroinflammation in the (PLP)-αsynuclein (αSYN) MSA model.MSCs were intravenously applied in aged (PLP)-αSYN transgenic mice. Behavioural analyses, defining fine motor coordination and balance capabilities as well as stride length analysis, were performed to measure behavioural outcome. Neuroprotection was assessed by quantifying TH neurons in the substantia nigra pars compacta (SNc). MSC treatment on neuroinflammation was analysed by cytokine measurements (IL-1α, IL-2, IL-4, IL-5, IL-6, IL-10, IL-17, GM-CSF, INFγ, MCP-1, TGF-β1, TNF-α) in brain lysates together with immunohistochemistry for T-cells and microglia. Four weeks post MSC treatment we observed neuroprotection in the SNc, as well as downregulation of cytokines involved in neuroinflammation. However, there was no behavioural improvement after MSC application.To our knowledge this is the first experimental approach of MSC treatment in a transgenic MSA mouse model. Our data suggest that intravenously infused MSCs have a potent effect on immunomodulation and neuroprotection. Our data warrant further studies to elucidate the efficacy of systemically administered MSCs in transgenic MSA models
    corecore