1,739 research outputs found

    Projection-free approximate balanced truncation of large unstable systems

    Get PDF
    In this article, we show that the projection-free, snapshot-based, balanced truncation method can be applied directly to unstable systems. We prove that even for unstable systems, the unmodified balanced proper orthogonal decomposition algorithm theoretically yields a converged transformation that balances the Gramians (including the unstable subspace). We then apply the method to a spatially developing unstable system and show that it results in reduced-order models of similar quality to the ones obtained with existing methods. Due to the unbounded growth of unstable modes, a practical restriction on the final impulse response simulation time appears, which can be adjusted depending on the desired order of the reduced-order model. Recommendations are given to further reduce the cost of the method if the system is large and to improve the performance of the method if it does not yield acceptable results in its unmodified form. Finally, the method is applied to the linearized flow around a cylinder at Re = 100 to show that it actually is able to accurately reproduce impulse responses for more realistic unstable large-scale systems in practice. The well-established approximate balanced truncation numerical framework therefore can be safely applied to unstable systems without any modifications. Additionally, balanced reduced-order models can readily be obtained even for large systems, where the computational cost of existing methods is prohibitive

    On the mechanism of trailing vortex wandering

    Get PDF
    The mechanism of trailing vortex wandering has long been debated and is often attributed to either wind-tunnel effects or an instability. Using particle image velocimetry data obtained in the wake of a NACA0012 airfoil, we remove the effect of wandering from the measured velocity field and, through a triple decomposition, recover the coherent wandering motion. Based on this wandering motion, the most energetic structures are computed using the proper orthogonal decomposition (POD) and exhibit a helical mode with an azimuthal wavenumber of |m|=1 whose kinetic energy grows monotonically in the downstream direction. To investigate the nature of the vortex wandering, we perform a spatial stability analysis of a matched Batchelor vortex. The primary stability mode is found to be marginally stable and nearly identical in both size and structure to the leading POD mode. The strikingly similar structure, coupled with the measured energy growth, supports the proposition that the vortex wandering is the result of an instability. We conclude that the cause of the wandering is the non-zero radial velocity of the |m|=1 mode on the vortex centreline, which acts to transversely displace the trailing vortex, as observed in experiments. However, the marginal nature of the stability mode prevents a definitive conclusion regarding the specific type of instability

    Stability of a moving radial liquid sheet: experiments

    Get PDF
    A recent theory (Tirumkudulu & Paramati, Phys. Fluids, vol. 25, 2013, 102107) for a radially expanding liquid sheet, that accounts for liquid inertia, interfacial tension and thinning of the liquid sheet while ignoring the inertia of the surrounding gas and viscous effects, shows that such a sheet is convectively unstable to small sinuous disturbances at all frequencies and Weber numbers. We equivalent to rho(l)U(2)h/sigma). Here, rho(l) and sigma are the density and surface tension of the liquid, respectively, U is the speed of the liquid jet, and h is the local sheet thickness. In this study we use a simple non-contact optical technique based on laser-induced fluorescence (LIF) to measure the instantaneous local sheet thickness and displacement of a circular sheet produced by head-on impingement of two laminar jets. When the impingement point is disturbed via acoustic forcing, sinuous waves produced close to the impingement point travel radially outwards. The phase speed of the sinuous wave decreases while the amplitude grows as they propagate radially outwards. Our experimental technique was unable to detect thickness modulations in the presence of forcing, suggesting that the modulations could be smaller than the resolution of our experimental technique. The measured phase speed of the sinuous wave envelope matches with theoretical predictions while there is a qualitative agreement in the case of spatial growth. We show that there is a range of frequencies over which the sheet is unstable due to both aerodynamic interaction and thinning effects, while outside this range, thinning effects dominate. These results imply that a full theory that describes the dynamics of a radially expanding liquid sheet should account for both effects

    Optimal frequency-response sensitivity of compressible flow over roughness elements

    Get PDF
    Compressible flow over a flat plate with two localised and well-separated roughness elements is analysed by global frequency-response analysis. This analysis reveals a sustained feedback loop consisting of a convectively unstable shear-layer instability, triggered at the upstream roughness, and an upstream-propagating acoustic wave, originating at the downstream roughness and regenerating the shear-layer instability at the upstream protrusion. A typical multi-peaked frequency response is recovered from the numerical simulations. In addition, the optimal forcing and response clearly extract the components of this feedback loop and isolate flow regions of pronounced sensitivity and amplification. An efficient parametric-sensitivity framework is introduced and applied to the reference case which shows that first-order increases in Reynolds number and roughness height act destabilising on the flow, while changes in Mach number or roughness separation cause corresponding shifts in the peak frequencies. This information is gained with negligible effort beyond the reference case and can easily be applied to more complex flows

    Recursive dynamic mode decomposition of transient and post-transient wake flows

    Get PDF
    A novel data-driven modal decomposition of fluid flow is proposed, comprising key features of proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). The first mode is the normalized real or imaginary part of the DMD mode that minimizes the time-averaged residual. The NNth mode is defined recursively in an analogous manner based on the residual of an expansion using the first N−1N−1 modes. The resulting recursive DMD (RDMD) modes are orthogonal by construction, retain pure frequency content and aim at low residual. Recursive DMD is applied to transient cylinder wake data and is benchmarked against POD and optimized DMD (Chen et al., J. Nonlinear Sci., vol. 22, 2012, pp. 887–915) for the same snapshot sequence. Unlike POD modes, RDMD structures are shown to have purer frequency content while retaining a residual of comparable order to POD. In contrast to DMD, with exponentially growing or decaying oscillatory amplitudes, RDMD clearly identifies initial, maximum and final fluctuation levels. Intriguingly, RDMD outperforms both POD and DMD in the limit-cycle resolution from the same snapshots. Robustness of these observations is demonstrated for other parameters of the cylinder wake and for a more complex wake behind three rotating cylinders. Recursive DMD is proposed as an attractive alternative to POD and DMD for empirical Galerkin models, in particular for nonlinear transient dynamics

    A Kind of Affine Weighted Moment Invariants

    Full text link
    A new kind of geometric invariants is proposed in this paper, which is called affine weighted moment invariant (AWMI). By combination of local affine differential invariants and a framework of global integral, they can more effectively extract features of images and help to increase the number of low-order invariants and to decrease the calculating cost. The experimental results show that AWMIs have good stability and distinguishability and achieve better results in image retrieval than traditional moment invariants. An extension to 3D is straightforward

    River bedform inception by flow unsteadiness: a modal and nonmodal analysis

    Get PDF
    River bedforms arise as a result of morphological instabilities of the stream-sediment interface. Dunes and antidunes constitute the most typical patterns, and their occurrence and dynamics are relevant for a number of engineering and environmental applications. Although flow variability is a typical feature of all rivers, the bedform-triggering morphological instabilities have generally been studied under the assumption of a constant flow rate. In order to partially address this shortcoming, we here discuss the influence of (periodic) flow unsteadiness on bedform inception. To this end, our recent one-dimensional validated model coupling Dressler's equations with a refined mechanistic sediment transport formulation is adopted, and both the asymptotic and transient dynamics are investigated by modal and nonmodal analyses

    Adjoint-based parametric sensitivity analysis for swirling M-flames

    Get PDF
    A linear numerical study is conducted to quantify the effect of swirl on the response behaviour of premixed lean flames to general harmonic excitation in the inlet, upstream of combustion. This study considers axisymmetric M-flames and is based on the linearised compressible Navier–Stokes equations augmented by a simple one-step irreversible chemical reaction. Optimal frequency response gains for both axisymmetric and non-axisymmetric perturbations are computed via a direct–adjoint methodology and singular value decompositions. The high-dimensional parameter space, containing perturbation and base-flow parameters, is explored by taking advantage of generic sensitivity information gained from the adjoint solutions. This information is then tailored to specific parametric sensitivities by first-order perturbation expansions of the singular triplets about the respective parameters. Valuable flow information, at a negligible computational cost, is gained by simple weighted scalar products between direct and adjoint solutions. We find that for non-swirling flows, a mode with azimuthal wavenumber m=2 is the most efficiently driven structure. The structural mechanism underlying the optimal gains is shown to be the Orr mechanism for m=0 and a blend of Orr and other mechanisms, such as lift-up, for other azimuthal wavenumbers. Further to this, velocity and pressure perturbations are shown to make up the optimal input and output showing that the thermoacoustic mechanism is crucial in large energy amplifications. For m=0 these velocity perturbations are mainly longitudinal, but for higher wavenumbers azimuthal velocity fluctuations become prominent, especially in the non-swirling case. Sensitivity analyses are carried out with respect to the Mach number, Reynolds number and swirl number, and the accuracy of parametric gradients of the frequency response curve is assessed. The sensitivity analysis reveals that increases in Reynolds and Mach numbers yield higher gains, through a decrease in temperature diffusion. A rise in mean-flow swirl is shown to diminish the gain, with increased damping for higher azimuthal wavenumbers. This leads to a reordering of the most effectively amplified mode, with the axisymmetric ( m=0 ) mode becoming the dominant structure at moderate swirl numbers

    Non-normality and nonlinearity in thermoacoustic instabilities

    Get PDF
    Analysis of thermoacoustic instabilities were dominated by modal (eigenvalue) analysis for many decades. Recent progress in nonmodal stability analysis allows us to study the problem from a different perspective, by quantitatively describing the short-term behavior of disturbances. The short-term evolution has a bearing on subcritical transition to instability, known popularly as triggering instability in thermoacoustic parlance. We provide a review of the recent developments in the context of triggering instability. A tutorial for nonmodal stability analysis is provided. The applicability of the tools from nonmodal stability analysis are demonstrated with the help of a simple model of a Rjike tube. The article closes with a brief description of how to characterize bifurcations in thermoacoustic systems
    corecore