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Abstract

Highly swirling flows are often prone to precessing instabilities, with an azimuthal wavenumber

of m = −1. We carry out a weakly non-linear analysis to determine the response behaviour of

this instability to harmonic forcing. An incompressible flow is considered, where an annular inlet

provides a swirling flow into a cylindrical region. For high swirl a vortex breakdown is induced,

which is found to support an m = −1 instability. By expanding about the Reynolds number

where this instability first occurs, a Stuart–Landau equation for the critical mode amplitude can

be found and the effect of forcing can be assessed. Two types of forcing are considered. Firstly,

a Gaussian forcing confined to the inlet nozzle is used to study m = 0 and m = −1 forcings.

Secondly, optimal forcings (measured by the two-norm) with azimuthal wavenumbers in the range

−3 ≤ m ≤ 3 are considered. It is found that modal stabilization is highly dependent on the

azimuthal wavenumber m, which governs whether the forcing is counter or co-rotating with the

direction of swirl. Counter-rotating forcings are able to stabilize the mode for a wide range of forcing

frequencies, while co-rotating forcings fail to yield a stable flow. In all cases, it is the base-flow

modification induced by the forced response that is the dominant underlying feature responsible

for the observed stabilization. This base-flow modification seeks to reduce axial momentum near

the recirculation region for co-rotating forcings, and increase it for counter-rotating forcings, thus

changing the size of the recirculation bubble and producing the two distinct response behaviours.

I. INTRODUCTION

Swirling jets are commonly found in a variety of industrial applications. In gas turbine

combustion, swirl injection is used to improve mixing between fuel and oxidizer and to

stabilize the flame. For jets with sufficiently high swirl, vortex breakdown occurs, which is

characterized by a region of recirculating fluid just downstream of the injection plane. This

recirculation zone ensures a continuous supply of fresh reactants to the flame surface, thus

helping to stabilize the flame [1].

Numerous experimental and numerical studies have reported the presence of a large-scale

self-excited unsteady helical flow structure in such turbulent highly swirled jet configura-

tions [2], for both reacting and non-reacting cases. This structure is commonly referred to as
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the precessing vortex core (PVC). Linear stability analyses about time-averaged axisymmet-

ric flow profiles have shown that the PVC is a manifestation of a helical global instability [3],

similar to the spiral mode of vortex breakdown observed in laminar-flow configurations [4–

6]. A sufficiently large region of absolute instability, around the recirculation bubble, and

sometimes extending into its downstream wake, has been identified as the main condition

for the onset of self-excited helical oscillations [6, 7]. Using a linear global stability analysis,

the adjoint of the unstable global mode has been used to identify the wavemaker [8] – the

compact region responsible for driving the self-excited oscillations. Depending on the flow

configuration, the wavemaker region has been found to be located at the upstream end of

the bubble [9], at the jet exit plane [10, 11], or in the wake of the bubble.

Although the origin of the PVC has become clearer now, its interaction with the flame

and its effect on the performance of the combustor are not entirely transparent. Studies

have shown that the PVC has an effect on flame shape and stability [12] as well as fuel-air

mixing [13] in a combustor. Of particular importance in this setting is the relation of the

PVC to thermo-acoustic instabilities in combustors. Heat-release fluctuations due to the

PVC can interact with acoustic oscillations to both suppress and excite thermo-acoustic

modes [14]. In turn, acoustic oscillations have also been shown to both suppress and excite

the PVC [15].

In order to understand this complicated interaction in more detail, a reasonable first step

is to understand and control the behaviour of the PVC in the absence of the flame. The

response of the PVC to open-loop forcing, in particular, has received considerable attention.

Recent experimental studies have looked at open-loop and feedback control of the PVC in

turbulent, non-reacting configurations using harmonic forcing. For forcing with the same

azimuthal wavenumber as the PVC (m = 1 or m = −1, depending on the sign convention

used in the respective study), researchers observed ‘lock-in’ between the PVC and the forcing,

accompanied by a reduction in the amplitude of the PVC [16–19]. They compared optimal

actuator locations with those predicted by linear stability analysis, finding good agreement

between experiments and theory [19]. For forcings with a azimuthal wavenumber different

to that of the PVC (m = 0 or |m| > 1), researchers observed that the PVC could be both

suppressed and excited [14–16] depending on the stability properties of the mean flow.

In addition to offering insight into the origin of the PVC, linear stability analysis can

also provide insight into the control of the PVC. The adjoint global mode provides linear

receptivity information – it identifies the regions of the flow that are most receptive to
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harmonic forcing at the frequency of the global mode [7]. For passive control strategies,

the adjoint mode can then be used within a Lagrangian optimization framework to identify

locations where a steady volume force or wall blowing/suction strategy will be most effective

in controlling the growth rate and frequency of the global mode [20]. In the context of

swirling jets, these techniques have been used to study the control of the helical global mode

in laminar [21–23] and, more recently, turbulent regimes [11, 19]. These studies have found

that regions upstream of the bubble and in the inlet nozzle are highly receptive to open-loop

forcing and passive control efforts.

Although these approaches are highly insightful, they fail to predict the effect of forcing

with a different wavenumber and frequency to that of the global mode, as this requires

non-linearity to be taken into account. For globally unstable flows near the threshold of

instability, a multiple-scale analysis can be used to derive a Stuart-Landau equation that

accounts for the saturation of the amplitude of the linear global mode [24]. This approach

was demonstrated in the case of flow over a cavity and flow behind a cylinder and was

subsequently used to model the interaction between the helical and double-helical modes

of a swirling flow [25]. More recently, this weakly non-linear analysis has been extended to

account for the effect of small-amplitude harmonic forcing on the amplitude and frequency

of the unstable global mode [26]. For the case of cavity flow, it was possible to completely

suppress the self-excited oscillations using high-frequency forcing.

In this study, we investigate whether this weakly non-linear approach can be applied

to study the control of self-excited helical oscillations in a uniform-density incompressible

swirling jet. We extend the framework of Sipp [26] to consider the effect of harmonic forcing

over a range of azimuthal wavenumbers. For each wavenumber, we determine the range of

frequencies over which the helical mode is stabilized and destabilized, the type of forcing

that is most effective, and the physical mechanisms that facilitate the control of the global

mode.

II. MATHEMATICAL FORMULATION

A. Governing Equations

We consider a jet exiting from an annular inlet into a cylindrical domain. The flow

geometry is shown in figure 1. Region 0 consists of the inlet annulus which has length
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xinlet = 5, inner and outer radii rin = 3/11 and rout = 1, respectively, with the central rod

protruding into region 1 by an amount xrod = 2/11. The size of the cylindrical region is set

by routlet = 3 and xoutlet = 40. We use a cylindrical coordinate system and work entirely in

non-dimensional variables which are summarized in table I.

Non-dimensional variable Definition Non-dimensional constant Definition

Length x =
x̂

L
Reynolds number Re =

ρ0Urout

µ

Velocity u =
û

U
Swirl number S =

∫ rout
rin

rwur dr

(rout − rin)
∫ rout
rin

u2r dr

Pressure P =
P̂

ρ0U2

Time t =
t̂

L/U

TABLE I. Definitions of the non-dimensional parameters and variables. The reference velocity U

is the maximum longitudinal velocity at the inlet, and the length L is the outer radius of the inlet

annulus. µ is the dynamic viscosity. The radii rin and routare the non-dimensional inner and outer

radii of the annulus, respectively. The swirl number is calculated at x = xinlet.

The motion of the fluid is governed by the forced constant-density incompressible Navier–

Stokes equations, written in non-dimensional form as

∇ · u = 0, (1)

∂u

∂t
+∇ · (u⊗ u) = −∇P +

1

Re
∇ · τ + f ′, (2)

where the velocity vector u ≡ (u, v, w)T contains the axial, radial, and azimuthal velocities,

respectively, τ denotes the viscous stress tensor, and f ′ represents the forcing vector.
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FIG. 1. Sketch of the computational domain for the simulations. The domain size is given by xinlet,

xoutlet and routlet. We show the reflection of the domain across the line r = 0, but the flow is not

solved there; instead, a symmetry condition is applied.

B. Weakly nonlinear formulation

We follow the approach of Sipp [26] to obtain the amplitude equation for our unstable

mode in the presence of harmonic forcing. An outline of the analysis is presented here, with

further details being provided in appendix A. For ease of notation we rewrite the governing

equations (1-2) as

B
∂q

∂t
= R(q) + (CF ′f(x, r)eiωf t+imfθ + c.c), (3)

where we have specified that the forcing has azimuthal wavenumber mf , temporal frequency

ωf and amplitude F ′. The state vector is specified as q = (u, P )T , and the matrix B

enforces that the time derivative only applies to the momentum equations and the relevant

velocity components. Likewise, the matrix C implies that the forcing f = (fx, fr, fθ)
T only

drives the momentum equations.

From previous studies and preliminary investigations, we know that the flow is steady

and axisymmetric below a critical Reynolds number, which we denote Rec. We consider

the asymptotic expansion of the flow about this critical point by writing Re−1 = Re−1
c − δ′,

where δ′ = ε2δ for small ε, and δ is a user-specified parameter proportional to the distance

from criticality. For the case of non-resonant forcing, we use the scaling F ′ = εF and seek

solutions for the flow in increasing powers of ε

q(t, x, r, θ) = q0(x, r) + ε
[
AqAe

−iθ+iωct + FqF e
imfθ+iωf t + c.c.

]
+ ε2

[
qδ + qAĀ + qFF̄ +

(
qAAe

−2iθ+2iωct + qAF e
i(mf−1)θ+i(ωc+ωf )t

+ qAF̄ e
i(−mf−1)θ+i(ωc−ωf )t + F 2qFF e

2imfθ+2iωf t + c.c.
)]

+ h.o.t., (4)
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where q0 is a steady axisymmetric solution to the governing equations at Re = Rec, qA is

the linear global mode with amplitude A, azimuthal wavenumber m = −1 and frequency

ωc, qF is the linear forced response with amplitude F , and the other terms are the base flow

modifications and harmonic terms arising from the interaction between the global mode and

the forced response and their conjugates. By substituting (4) into (3) and equating terms

in various orders of ε, we obtain a series of linear equations that can be solved to obtain the

flow responses and interactions at the different orders. Here, using the adjoint global mode

q†A to satisfy compatibility conditions, at third order, we can obtain a scalar equation for

the complex amplitude of the unstable mode A

dA

dT
=
(
ηδ − |F |2µ

)
A− νA|A|2. (5)

Here T = ε2t is the slow time scale on which the amplitude evolves, η and ν are complex

coefficients that control the linear growth rate and saturation of the global mode to a limit

cycle in the absence of forcing, and µ := µ(ωf ) is a complex coefficient that controls the

effect of the forcing on the growth rate of the mode, with <(µ) > 0 leading to a more stable

flow and <(µ) < 0 leading to a more unstable flow.

Although complete stabilization of the mode may be possible, the forcing energy to

accomplish this goal may be prohibitively high. In this case, we can still utilize a forcing

to control the limit-cycle behaviour. As shown by Sipp [26], the limit-cycle amplitude is

directly proportional to the growth rate, and the change in the limit-cycle frequency due to

the forcing is controlled by the parameter

γ(ωf ) = <(µ(ωf ))

(
−=(µ(ωf ))

<(µ(ωf ))
+
=(η)

<(η)

)
. (6)

This leads to two possible control strategies considered by Sipp [26]. Either one reduces the

growth rate or limit cycle amplitude (through µ), or one shifts the limit-cycle frequency to a

less dangerous one (through γ). In our work, we will focus mainly on the first (stabilization)

strategy.

It is important to note that the amplitude equation obtained at third order is not valid if

terms with wavenumber m = −1 and frequency ω = ωc occur at lower orders. For our study

this means that the three cases of mf = 0 and ωf = 0, mf = −2 and ωf = 2ωc, and mf = −1

and ωc = ωf cannot be studied using the above formulation. Using alternative asymptotic

scalings [26] leads to different amplitude equations for these cases (see appendix). In the

first case, steady forcing can directly influence the growth rate with a forcing amplitude an
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FIG. 2. The computational grid consists of three regions of different mesh densities, with x1 = −0.5,

r1 = 1.5 and x2 = 3, and mesh densities n1 = 12nr, n2 = 20nr, and n3 = 8nr, where nr = 1.5 is a

mesh-refinement parameter.

order of magnitude smaller than for non-resonant harmonic forcing, and with a stabilising

or destabilising effect depending on the sign of F . In the latter two cases, although resonant

forcing provides a cheap way to alter the frequency of the flow, direct manipulation of the

eigenvalue is not possible. For this reason, we will not consider these cases in more detail in

this present study.

C. Numerical Implementation

We use a numerical code based on the FEMSTAB package developed by Garnaud et al.

[27, 28], that has been modified by Qadri and Schmid [29] in a recent weakly non-linear

study. In this code, the governing equations (1)-(2) are multiplied by r, and the weak

form of the resulting equations is then solved in FREEFEM++ [30] using the finite-element

method. Taylor-Hood elements (P2 -elements for the velocity components and P1 -elements

for the pressure) are used. The linearised stiffness matrix is found by explicitly linearising

equations (1)-(2) about a given base flow and by proceeding in the same manner as in

the non-linear case. Access to the adjoint matrix is obtained by transposing the linearised

matrix.

The numerical domain is discretised on an unstructured mesh, comprising three regions

with different mesh densities, as shown in figure 2. We found that nr = 1.5 is sufficient for

all eigenvalues and Stuart-Landau coefficients to converge to mesh-independent quantities.

(see appendix B).

No-slip boundary conditions are used for the velocity at the walls and Neumann conditions

are applied at the lateral and outlet boundaries. The inflow condition is a velocity profile

with a chosen swirl number as defined by the formula given in table I. Additionally, we need
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|m| single-valued multi-valued

0 Neumann Dirichlet

1 Dirichlet Neumann

≥ 2 Dirichlet Dirichlet

TABLE II. The centreline boundary conditions for single-valued and multi-valued quantities for

different azimuthal wavenumbers m.

to apply boundary conditions at r = 0 to close the problem. These take the form of either a

homogeneous Dirichlet or homogeneous Neumann boundary condition, and they depend on

the mode being solved for and if the variable is single-valued or multi-valued at r = 0 [31].

The type of boundary condition for each mode is shown in table II, where the pressure P

and axial velocity u are single-valued quantities, whereas the radial and azimuthal velocities,

v and w, respectively, are multi-valued.

We obtain a steady base flow q0 using a Newton–Raphson method, by starting at a

low Reynolds number and using the converged base flow as an initial guess for a higher

Reynolds number. Iterations are continued until the desired critical Reynolds number Rec is

obtained. This procedure is possible because the flow is stable to axisymmetric disturbances.

The linearised (A5) and adjoint (A19) eigenvalue problems are solved using the shift-invert

Arnoldi method as implemented in the integrated ARPACK package. Matrix inversions,

that are required for the solution of the forced response (A6) as well as the harmonic and

base-flow modifications in equations (A9)-(A14), are handled using the MUMPS package.

A more detailed description of the numerical implementation can be found in the thesis by

Skene [32].

III. RESULTS

A. No added forcing

We first consider the flow with no harmonic driving, i.e., F = 0. This will provide a

baseline against which we can measure the effect of forcing. We consider a swirling jet with

swirl number S = 0.87. As the Reynolds number is increased, a vortex breakdown bubble

forms on the jet axis. At Re = Rec = 295.95, we find that the steady base flow is unstable

to perturbations with m = −1. Figure 3 shows the steady base flow that is obtained at the
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(a) The steady axisymmetric base-flow. (b) A zoomed plot of the recirculation bubble

with streamlines superimposed.

FIG. 3. The axial velocity component of the steady axisymmetric base flow q0 for S = 0.87 at the

threshold of instability, Rec = 295.95.

(a) <(uA) (b) Zoom of <(uA) with streamlines

superimposed.

FIG. 4. The axial velocity component of the unstable mode for the base flow in figure 3.

critical Reynolds number. The vortex breakdown bubble is situated around one jet diameter

downstream of the inlet plane and is significantly smaller than the bubble seen in previous

studies featuring the Grabowski profile [4].

For this base flow, we find, for m = −1, a marginally unstable linear global mode with a

frequency ωc ≈ 2.10. The axial velocity component of this mode is shown in figure 4. The

real and imaginary parts of the mode are a quarter of a wavelength out of phase, have large

(a) <(u†A) (b) Zoom of <(u†A) with streamlines

superimposed.

FIG. 5. The axial velocity component of the unstable adjoint mode for the base flow in figure 3.
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(a) <(uAA) (b) <(uAĀ)

(c) <(uδ)

FIG. 6. The axial velocity component of the harmonics and base-flow modifications caused by the

unstable mode in figure 4.

magnitudes in the vicinity of the breakdown bubble and decay further downstream in its

wake. This is similar to the behaviour seen by Qadri et al. [9], who studied spiral vortex

breakdown in a flow featuring the Grabowski profile. In their work, they considered the

use of the adjoint mode to obtain structural sensitivity information, and we can use similar

ideas to better understand the adjoint mode, shown in figure 5.

The adjoint mode consists of two types of structures. Firstly, there are a series of tilted

streaks in the inlet nozzle and near the jet exit-plane. This structure is associated with the

Orr-mechanism and is due to the strong non-normality of the swirling jet. It is similar to

structures seen in uniform-density and low-density jets. Secondly, there is a region of high

amplitude near the vortex breakdown bubble. The corresponding structures are associated

with the helical mode of vortex breakdown and are similar to structures seen in spiral vortex

breakdown based on the Grabowski profile [9, 25]. In practice, the unstable mode is highly

sensitive to changes in the regions where the adjoint mode has high amplitude. As an inner

product with the adjoint eigenvector is used to reduce our original vector equation to a scalar

one, this means that only terms that overlap significantly with the adjoint eigenvector and

hence lie inside this highly sensitive region will be effective at changing the behaviour of the

global mode.

Using the obtained direct mode we are able to calculate its harmonic and base-flow mod-

ification. Figure 6a shows that the harmonic has a large magnitude near the jet centreline

up to about five jet diameters downstream of the inlet plane. The base-flow modification,
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shown in figure 6b, has a much larger magnitude near the recirculation bubble and in the

inner shear layer downstream. We observe that the base flow modification is such that it

increases the axial velocity in the vicinity of the recirculation bubble, decreases the velocity

in the inner shear layer downstream, and weakly increases the axial velocity in the outer

shear layer. This has the effect of smearing out the shear and increasing the spreading

rate of the jet. Together, these two terms (and particularly the base-flow modification) are

responsible for the saturation of the instability to form a limit cycle. The initial growth of

the instability stems from the viscous term at second order shown in figure 6c, as well as the

third-order viscous term from the unstable mode which is not shown. Figure 6c shows that

the viscous term at second order induces a large negative axial velocity near the recirculation

bubble. Physically, this corresponds to an increase in the size of the recirculation bubble

as the Reynolds number is increased. By combining these fields with the adjoint mode we

obtain the parameters η = 267.73 − 7.73i, and ν = 32.3 + 33.2i. As <(η) > 0 we recover

that the flow will be unstable for Re > Rec, as expected. We also have <(ν) > 0, which

means that the non-linearities will saturate the instability into a limit cycle.

B. Gaussian forcing

In this section we consider the effect of Gaussian forcing in the inlet nozzle. Specifically,

we show results for axisymmetric (mf = 0) and helical (mf = −1) forcing. For each of these

cases, the forcing is taken to be a simple Gaussian in the axial velocity component, hence

the forcing can be written as

f =

(
G exp

(
−(x+ 1)2 + (r − 0.5)2

0.12

)
, 0, 0

)T
, (7)

with G a constant chosen so that the forcing has unit norm 〈f ,f〉 = 1. As shown in section

II B, the ability of the forcing to manipulate the mode is determined by the real part of µ.

Therefore, by calculating this parameter for a range of forcing frequencies, we can assess the

stabilizing behaviour of the Gaussian forcing as a function of the forcing frequency. Besides

the real part of µ, another parameter of interest is the gain of the forced linear response.

This is a measure of the linear amplification of the forcing by the flow and is calculated as

the ratio of the norm of the response over the norm of the forcing, according to

σ =
‖uF‖
‖f‖ = 〈uF ,uF 〉. (8)
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By calculating the gain for each frequency, we can see how responsive the base flow is to

particular forcing frequencies. The real part of µ and the corresponding linear gains are

shown in figure 7 for non-resonant forcing frequencies. We have removed points near the

invalid frequencies to stress that the amplitude equation (5) is not valid in the vicinity of

these frequencies.

Figure 7c shows that forcing with mf = 0 is destabilizing for all frequencies, except for

low values where it is marginally stabilizing. Conversely, Figure 7d shows that forcing with

mf = −1 is stabilizing for all frequencies, except for small ranges below the sub-harmonic

(ωc/2) and harmonic (ωc), respectively. The most effective forcing frequency for stabilizing

the global mode (apart from just below the critical frequency) is ωf ≈ 1.7, which is located

near a local peak in the frequency-response curve, around ωf ≈ 1.8. Figure 7b shows that

there is a particularly large frequency response at ωf ≈ ωc. This is simply due to resonance

with the global mode.

The forcing also has an effect on the frequency of the limit cycle. Figure 7e shows that

forcing with mf = 0 decreases the frequency of the limit cycle, except for low values of ωf

where it increases the frequency of the limit cycle (while also having a stabilizing influence).

Conversely, figure 7f shows that forcing with mf = −1 increases the frequency of the limit

cycle in the range ωc/2 < ωf < ωc and decreases the limit-cycle frequency outside this range.

It is also interesting to note that there is a slight asymmetry in the receptivity to forcing for

ωf just above and just below the natural frequency of the global mode. Forcing just below

the natural frequency is more effective. This has also been observed in experiments of forced

turbulent swirling jets [19]. It is worth noting however that figure 7 is technically valid for

very small forcing amplitudes. It does not capture ‘lock-in’ behaviour that is observed for

larger forcing amplitudes, as has been observed in a variety of nonlinear systems.

To understand the effects of the forcing, we will analyze the most stabilizing frequency for

mf = −1 (which is ωf ≈ 1.7 away from the harmonic) and the most destabilizing frequency

for mf = 0 (which is ωf ≈ 1.3) in more detail. Figures 8 and 9 show the forced response,

harmonics and base-flow modifications due to these two types of forcing. We can see that

there are fundamental differences between the two cases. The mf = 0 response manifests

itself in a series of perturbations confined to the inner shear layer far downstream of the

inlet. On the other hand, the mf = −1 response shows far more activity near the core of

the swirling jet and closer to the vortex breakdown bubble and inlet plane. These responses

translate into differences in the harmonics, with the uAF̄ harmonic being further downstream

13
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FIG. 7. The gain, real part of µ and γ are shown for a range of frequencies. Calculated frequencies

are shown as plus-symbols in the gain plots, and crosses and circles in the µ and γ plots. Circles

denote a positive sign for µ (stabilizing) or γ, and crosses denote a negative sign. The vertical solid

black lines shows the resonant frequency ωc, for which, in the case of mf = −1, the amplitude

equation is not valid.
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for mf = 0 forcing than for mf = −1 forcing, which is also situated closer to the centreline.

This behaviour is also demonstrated by the uAF harmonic. The base-flow modifications uFF̄

show opposite signs near the recirculation bubble – mf = 0 forcing reduces the axial velocity

while mf = −1 forcing increases the axial velocity.

To extend this analysis, we proceed by recognizing that the vector field µ has three

distinct contributions. Equation (A16) shows that µ is determined as a sum of vector fields

according to

µFF̄ = uA · ∇0uFF̄ + uFF̄ · ∇−1uA, (9)

µAF = ūF · ∇mf−1uAF + uAF · ∇−mf
ūF , (10)

µAF̄ = uA · ∇−(mf+1)uAF̄ + uAF̄ · ∇mf
uF , (11)

and hence we can write µ = µFF̄ + µAF + µAF̄ , where each contribution stems from its

corresponding vector field. By examining the magnitude of these contributions, shown by

additional lines in figures 7c and 7d, we find that µFF̄ is dominant for mf = 0 forcing and

is mostly dominant for mf = −1 as well. For mf = −1 forcing at frequencies ωf ≥ 1.8,

the interactions of the unstable mode with the forced response and its conjugate become

more important. However, for our sub-critical optimal frequency of ω = 1.7, the base-

flow modification term is still dominant. As µFF̄ is calculated from the interaction of the

unstable mode with the base-flow modification caused by the forced response, we conclude

that nonlinear base-flow modifications play a key role in controlling the growth rate of the

global mode at non-resonant frequencies.

It is not the base-flow modification directly that is responsible for the control of the

global-mode amplitude, but rather the interaction between the base-flow modification and

the unstable mode. This interaction is precisely the vector field µFF̄ . We use this field when

we calculate µ, through the term µFF̄ = 〈u†,µFF̄ 〉. If, instead of taking the inner product

we take the element-wise, or Hadamard, product µI
F F̄

= ū† ◦ CTWCµFF̄ , we obtain a

structure whose elements sum to µFF̄ . Through this structure we can thus determine which

areas of the flow, modified by the interaction of the base-flow correction with the unstable

mode, lead to either stabilization or destabilization. Both the interaction term µFF̄ and

structural term µI
F F̄

are shown in figures 10 and 11 for the two types of forcing considered

thus far.

We can see from figure 10a that the axial component of the interaction consists of a

localised bubble with positive values near the inner shear layer and recirculation bubble.
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(a) <(uF ) (b) <(uFF̄ )

(c) <(uAF̄ ) (d) <(uAF )

FIG. 8. Axial velocity components of the forced response, mean-flow modification, and harmonics

for forcing with mf = 0 and ωf = 1.3.

(a) <(uF ) (b) <(uFF̄ )

(c) <(uAF̄ ) (d) <(uAF )

FIG. 9. Axial velocity components of the forced response, mean-flow modification, and harmonics

for forcing with mf = −1 and ωf = 1.7.

The structural vector in figure 10b then shows that it is almost entirely this bubble that

contributes to the term µFF̄ . Moreover, the figure shows a negative contribution in the shear

layer upstream of the bubble, with a further positive contribution downstream in the shear

layer around the bubble. As the negative contribution outranks the positive one, we get

an overall destabilizing effect. For mf = −1 we can see from figure 11 that the interaction

term also contains a bubble in the same location, but this time it is negative. This leads to

a similar structural vector, however, in this case the positive part outweighs the negative,
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(a) <(µu,F F̄ ) (b) <(µI
u,F F̄

) zoomed in with streamlines

superimposed

FIG. 10. Weakly nonlinear interaction terms due to base-flow modifications arising from the

Gaussian forcing with mf = 0 at ωf = 1.3 (axial velocity components shown).

(a) <(µu,F F̄ ). (b) <(µI
u,F F̄

) zoomed in with streamlines

superimposed

FIG. 11. Weakly nonlinear interaction terms due to base-flow modifications arising from the

Gaussian forcing with mf = −1 at ωf = 1.7 (axial velocity components shown).

ultimately leading to stabilization. In particular, these figures highlight that the effect of

the two modes is nearly identical in location, albeit with a different sign.

The opposite effect of forcing with mf = 0 and mf = −1 can be more clearly traced

back to the base-flow modification (figures 8 and 9). We see that the mf = −1 forcing gives

an increased longitudinal velocity in the core of the jet, upstream of the vortex breakdown

bubble and in its wake. This weakens both the shear and the recirculation and suppresses the

instability mechanism which, for spiral vortex breakdown, is a combination of a shear-driven

(Kelvin-Helmholtz) and a centrifugal instability [9, 10]. Conversely, for mf = 0 forcing, the

base-flow modification acts to reduce the velocity in the jet core, and to increase it in the

outer shear layer. This change tends to increase the shear as well as the recirculation, and

thus strengthens the identified instability mechanisms.

As described in section II B and appendix A, even though the amplitude equation is not

valid for mf = 0, and ωf = 0 for the O(ε) forcing considered so far, it is possible to get a valid
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amplitude equation by forcing at O(ε2). In this case, it is a direct interaction between the

forced response and the unstable mode at O(ε3) that gives rise to a change in the eigenvalue

as shown by equation (A24). In the case of our Gaussian forcing this produces a value

of µ = −0.12 + 6.15i showing that we can obtain a marginally stabilizing or destabilizing

effect. Even though this effect is less when compared to other forcing frequencies, it should

be noted that the overall cost to achieve this manipulation of the instability is less, since

the forcing is one power of ε smaller.

C. Optimal forcing of all wavenumbers

We now extend our analysis to consider a variety of wavenumbers and forcing structures.

As we have seen in section III B, the ability of the forcing to manipulate the amplitude of

the mode is related to – but not entirely due to – the magnitude of the forced response.

Hence, in order to make a fair comparison between azimuthal modes and frequencies we will

proceed by considering only the optimal forcing, i.e. choosing f by solving

argmax
f

‖uF‖
‖f‖ = argmax

f

‖CT (iBωf −Lmf
)−1Cf‖

‖f‖ . (12)

This can be solved using singular value decomposition (SVD) directly in FREEFEM++

following the approach of Sipp and Marquet [33]. Furthermore, the first order accurate

formula
∂σ

∂ω
= σ2=[〈f ,uF 〉], (13)

is used to allow us to interpolate between gains using cubic-Hermite splines [34].

We will only consider positive forcing frequencies. This is possible since L̄m = L−m

which in turn implies that the response qF to frequency ωf for wavenumber mf produces

the response q̄F for frequency −ωf and wavenumber −mf . Hence, by considering positive

frequencies ωf we allow the wavenumber m to control the direction of the forcing in the

θ-direction. This means that positive values of mf lead to forcing in the direction of the

mean swirl, while negative values of mf yield forcings counter to the mean swirl.

Figures 12a and 12b show the optimal gains of the forced response for positive and

negative wavenumbers, respectively. We show wavenumbers up to m = 3 as this is the

highest amplified. For positive wavenumbers, the optimal gains for each frequency increase

with increasing wavenumber. Meanwhile, the frequency at which perturbations are most

linearly amplified decreases with increasing wavenumber. For forcing with mf = 2 and
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(a) Optimal gain of the linear frequency

response for positive wavenumbers.
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(b) Optimal gain of the linear frequency

response for negative wavenumbers.
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(c) The optimal weakly nonlinear coe�cient µ

for positive wavenumbers.
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(d) The optimal weakly nonlinear coe�cient µ

for negative wavenumbers.
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(e) The optimal frequency shift parameter � for

positive wavenumbers.
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(f) The optimal frequency shift parameter � for

negative wavenumbers.

FIG. 12. The optimal gains of the forced linear response for positive and negative wavenumbers,

along with the values of the coefficients µ and γ. The vertical lines show the resonant frequencies

ωc and 2ωc where the amplitude equation may not valid depending on the wavenumber of the

forcing. Circles are used to show that µ, γ > 0, while crosses indicate that µ, γ < 0.
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mf = 3, we see linear optimal gains of up to 1010 in magnitude. Whilst this may seem

unobservably high, it is important to remember that this is a linear phenomenon. The

substantial gains here should not be interpreted as a unit-norm forcing leading to an O(1010)

response, but instead as a forcing of O(10−10) that would lead to an O(1) response. In other

words, the substantial gain should be interpreted in terms of a considerable sensitivity to

harmonic forcing. This large gain is a direct consequence of the strong non-normality of jet

flows and has been observed in non-swirling jets as well [27]. Perturbations with positive

wavenumbers are greatly amplified in the flow – for these wavenumbers, the flow is strongly

convectively unstable. Under this interpretation, we see that the flow is particularly sensitive

to forcings in the direction of the swirl.

For negative wavenumbers, we find that forcing with mf = −1 is the most linearly

amplified in the vicinity of the global-mode frequency, with the shape of the gain-frequency

curve closely mirroring the relationship obtained in figure 7b. The higher magnitude of the

gains shown in figure 12b is simply due to the forcing structure being chosen optimally.

Forcing with mf = −2 has the highest linear optimal gain for low frequencies but also shows

an increased gain around ωf ≈ 3.9, while forcing with mf = −3 has an increased gain around

ωf ≈ 5.1.

From figure 12c, we see that forcing with positive wavenumbers and axisymmetric forcing

is destabilizing across the entire range of frequencies considered. At the same time, forcing

with these wavenumbers decreases the frequency of the unstable mode. In contrast (see

figure 12d), we see that forcing with negative wavenumbers can be stabilizing across a

range of forcing frequencies. Harmonic driving with mf = −1 remains the most stabilizing

wavenumber to force with in the vicinity of the global-mode frequency. For higher values

of ωf , forcing with mf = −2 and mf = −3 show large stabilizing effects at ωf ≈ 3.9 and

ωf ≈ 5.1, respectively. For mf = −3, this strong stabilizing influence is due to the base-flow

modification caused by the large forced response at this frequency as shown in figure 12b.

For mf = 2, the mechanism is slightly more complicated, and the stabilizing effect is due

to the base-flow modification caused by the large forced response around this frequency and

also the interaction between the harmonic uAF̄ (or its associated conjugate) and the unstable

mode. The harmonic is particularly effective at this frequency because it has wavenumber

mf = 1 and temporal frequency ω close to ωc (or, equivalently, mf = −1 and ω close to

ωc), and hence, is close to resonance with the unstable mode. Indeed, it is this harmonic

that causes the amplitude equation to become invalid when ωf = 2ωc, as in this case the
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(a) fu, mf = −1, ωf = 1.7 (b) <(uFF̄ ), mf = −1, ωf = 1.7

(c) fu, mf = −2, ωf = 3.9 (d) <(uFF̄ ), mf = −2, ωf = 3.9

(e) fu, mf = −3, ωf = 5.1 (f) <(uFF̄ ), mf = −3, ωf = 5.1

FIG. 13. Axial velocity components of the optimal forcing and induced base-flow modification for

most stabilizing frequencies for negative wavenumbers.

harmonic has a frequency exactly equal to the critical value.

The effect of the optimal forcing on the limit-cycle frequencies is shown in figure 12f.

No clear physical mechanism can be proposed for the increase or decrease in the limit-

cycle frequency. Of particular interest, however, is the asymmetry observed in the effect

of forcing on either side of the harmonics. Around the first harmonic (ωf = ωc), forcing

with mf = −1 is more effective just below the corresponding frequency value, while forcing

with mf = −2 is more effective just above the harmonic. Around the second harmonic

(ωf = 2ωc), forcing with mf = −1 does not exhibit any preferential amplification (because

no resonant structures are induced), but forcing with mf = −2 is more effective just below

the second harmonic.

Figure 13 shows the optimal forcings and base-flow modifications for negative wavenum-

bers. For mf = −1 the optimal forcing shows a series of slanted structures in the inlet

nozzle and a positive body force in the axial direction above the recirculation region (see

figure 13a). This induces a base-flow modification, shown in figure 13b, that is similar to

that obtained with Gaussian forcing. From this we can conclude that, in the case of optimal

forcing, we stabilize the mode using the same physical mechanism as discussed in the previ-
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ous section. However, by choosing the forcing optimally we invoke a large gain in the driven

response, which increases the magnitude of the stabilizing effect. For higher wavenumbers,

the optimal forcings show similar features – a series of slanted structures in the inlet nozzle

and some body forcing in the vicinity of the recirculation bubble. The base-flow modification

also shares the same features: an increase in the velocity in the core of the jet.

This particular structure for the optimal forcing, with fluid elements angled against the

mean shear, points towards an Orr-related mechanism providing the optimal gain. This

amplification mechanism is not uncommon and has been reported in jets by Garnaud et al.

[28], in reactive jets by Skene and Schmid [34], and in boundary-layer flow by Sipp and

Marquet [33], among others. The selection of this mechanism is also reflected in the adjoint

mode (figure 5a), which exhibits a slanted structure in the inlet nozzle, highlighting the

sensitivity in this region. Therefore, if the Orr mechanism is invoked by forcing against

the mean shear in the inlet, we can obtain stabilization with mf = −1 forcings at smaller

driving amplitudes.

For all wavenumbers considered, the stabilization or destabilization can be linked to

the sign of the base-flow modification, as introduced in section III B. Figure 14 shows

the base-flow modifications that lead to the largest effect, for all azimuthal wavenumbers

considered. It is clear that forcing in the direction of the swirl (or in an axisymmetric

manner) destabilizes the flow by inducing base-flow modifications that decrease the axial

velocity in the recirculation region, whereas forcing counter to the swirl stabilizes the flow by

inducing base-flow modifications that increase the axial velocity in the recirculation region.

Similarly to the case of Gaussian forcing, we can still consider the effect of mf = ωf = 0

forcing using an O(ε2) forcing. In this case we obtain µ through equation (A24) to be

µ = −234.63 + 400.81i, again showing that stabilization or destabilization is possible in the

case of optimal forcing. The contrast in effect of optimal forcing for mf = 0 at ωf = 0 with

the destabilizing behaviour seen for all other forcing frequencies can be attributed to the

fact that it is not the base-flow modification induced by the forced response, but the forced

response itself that provides the observed mode manipulation in this case.

IV. VERIFICATION

We now proceed to verify our analysis using a self-consistent approach. In the previous

sections it was determined that base-flow modifications arising from the forced response
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(a) <(uFF̄ ), mf = 1, ωf = 0.8 (b) <(uFF̄ ), mf = −1, ωf = 1.6

(c) <(uFF̄ ), mf = 2, ωf = 0.4 (d) <(uFF̄ ), mf = −2, ωf = 3.9

(e) <(uFF̄ ), mf = 3, ωf = 0.4 (f) <(uFF̄ ), mf = −3, ωf = 5.1

(g) <(uFF̄ ), mf = 0, ωf = 1.3

FIG. 14. Base-flow modifications for various azimuthal wavenumbers, showing the longitudinal

velocity components in each case.

constitute the dominant terms that cause either stabilization or destabilization. Therefore,

to validate the predictions made by the µFF̄ part of the amplitude equation, we verify

that the eigenvalues, obtained from the original base-flow with a small amount of the base-

flow modification superimposed, are modified in the manner predicted by our analysis. As

µFF̄ ≈ µ, this verification, even though neglecting the cumulative effect of the harmonics,

provides a valuable check of our analysis. This verification is carried out below for the two
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εb mf = 0, ωf = 1.3 mf = −1, ωf = 1.7

0 −4.72× 10−6 + 2.096i −4.72× 10−6 + 2.096i

10−7 1.02× 10−4 + 2.095i −5.73× 10−4 + 2.097i

10−6 1.06× 10−3 + 2.093i −5.76× 10−3 + 2.108i

10−5 1.05× 10−2 + 2.075i −6.70× 10−2 + 2.233i

TABLE III. The modified eigenvalue, computed with various amounts of the base-flow modifications

added.

cases studied in section III B.

For mf = −1, and ωf = 1.7, we obtain a parameter value µ = 2421.4 − 6229.1i. As

the real part is positive, we conclude that adding the base-flow modification to the base-

equilibrium should make the modified eigenvalue more stable, i.e., we expect to observe a

more negative real part. Similarly, since the imaginary part of µ is negative, we infer that

the frequency of the eigenvalue should increase, and therefore the imaginary part of the

eigenvalue should be greater than ωc. Likewise, for mf = 0 and ωf = 1.3, we calculate

µ = −533.0 + 1040.0i. Consequently, the modified eigenvalue in this case should have a

larger real and smaller imaginary part.

Table III shows the eigenvalues that are obtained when the base-flow is modified according

to

qb = q0 + εbqFF̄ . (14)

We can see that, for mf = −1, increasing the amount of superimposed base-flow modification

decreases the real part of the eigenvalue, whilst increasing its imaginary part. Conversely,

for the mf = 0 mode, augmenting the amount of base-flow modification increases the real

part and decreases the imaginary part. This is precisely what is predicted by the ampli-

tude equation, verifying that our weakly non-linear analysis is self-consistent and correctly

captures first-order changes to the stability of the flow due to non-linearities.

V. CONCLUSIONS

Precessing motion is a common occurrence in flows subject to high mean-flow swirl. It

manifests itself as an instability of an axisymmetric base flow to perturbations with an

azimuthal wavenumber of m = −1. The response of this inherent instability to time-
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harmonic forcing has been studied in this article, in particular its nonlinear saturation

into finite-amplitude limit cycles. A weakly nonlinear analysis, anchored around the critical

Reynolds number for the onset of this stability, provides an evolution equation for the slowly

evolving amplitude of the precessing instability structure.

First, a user-defined harmonic body forcing in the inlet nozzle has been studied, cov-

ering the axisymmetric and m = −1 case, after which the body forcing has been chosen

to optimize the frequency response gain or transfer function norm. In the latter cases, az-

imuthal wavenumbers covering the range −3 ≤ m ≤ 3 have been assessed. In both cases,

the sign of the azimuthal wavenumber has a critical influence on nonlinear stabilization by

harmonic forcing. Broadly speaking, forcings that run counter to the mean-flow swirl achieve

stabilization of the otherwise unstable configuration (at least for the bulk of investigated

forcing frequencies), while co-rotating forcing failed to produce the same modal stabiliza-

tion. While theoretically the mechanisms underlying this stability modification could arise

(i) from a nonlinear interaction with induced higher harmonics or (ii) a modification of the

mean-flow at criticality and its subsequent interaction with the primary disturbance, it is

the latter possibility that dominates the stabilization process. A more detailed analysis

of this dominant mechanism revealed that it is linked to a change in length of the preva-

lent vortex-breakdown bubble: for co-rotating forcing, the recirculation bubble length is

increased yielding a more unstable flow configuration, while for counter-rotating forcing, the

shortened recirculation bubble accommodates a more stable perturbation dynamics across

a substantial range of forcing frequencies. This mean-flow modification by harmonic forcing

has been identified as the key characteristic of the two distinguishable response behaviors.
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Appendix A: Weakly non-linear analysis

1. Non-resonant forcing

We begin with the governing equations written in the form

B
∂q

∂t
= R(q) + (CF ′f(x, r)eiωf t+imfθ + c.c). (A1)

This formulation allows us to separate the Navier–Stokes operator into R(q) = N (q) −
ε2δC∇ · τ , where N (·) denotes the standard Navier–Stokes operator at the threshold of

instability at Re = Rec. By letting O(ε) be the order at which the linear dynamics, and

hence the unstable mode, are found, and similarly by choosing the forcing amplitude F ′ = εF

such that the forced response is described as a linear effect, we seek a solution of the form

q(t, x, r, θ) = q0(x, r) + εq1(t, x, r, θ) + ε2q2(t, x, r, θ) + higher order terms. (A2)

Substituting this expression into the governing equations and separating out powers in ε

produces, at O(ε0),

N (q0) = 0. (A3)

This establishes q0 as a steady solution of equation (A1).

For Re > Rec, the flow is globally unstable to a mode with azimuthal wavenumber

m = −1. This is a co-rotating but counter-winding helical mode. To account for the

response to forcing, we follow the scalings used by Sipp [26] and set the forcing to be of

order ε. Hence, the first-order solution is a superposition of the marginally unstable mode

and the response to this forcing, and can be written as

q1(t, x, r, θ) = AqA(x, r)e−iθ+iωct︸ ︷︷ ︸
m=-1 instability

+FqF (x, r)eimfθ+iωf t︸ ︷︷ ︸
m = mf forced response

+c.c, (A4)

where ωc is the frequency of the unstable helical mode and A and F denote the amplitudes of

the unstable mode and the forced response, respectively. Based on linear superposition, we

can solve for qA and qF separately. Substituting (A4) back into (A2) and (A1), we obtain,

at O(ε), a linear eigenvalue problem for the unstable mode at m = −1,

L−1qA = iBωcqA, (A5)

and a linear resolvent problem for the forced response at m = mf ,

(iBωf −Lmf
)qF = Cf . (A6)
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We have denoted the linearised Navier–Stokes operator for the azimuthal mode m as Lm

for brevity, i.e., Lm is the linear operator

L =
∂N
∂q

∣∣∣∣
q=q0

, (A7)

where the θ-derivatives have been replaced with multiplications by im.

As q2 must balance the terms stemming from the quadratic non-linearities of N (·), we

can see that it must have the form

q2(t, x, r, θ) = δqδ(x, r) + |A|2qAĀ(x, r) + |F |2qFF̄ (x, r)

+ (A2qAA(x, r)e−2iθ+2iωct + AFqAF (x, r)ei(mf−1)θ+i(ωc+ωf )t

+ AF̄qAF̄ (x, r)e−i(mf+1)θ+i(ωc−ωf )t + F 2qFF e
2imfθ+2iωf t + c.c.). (A8)

These terms are referred to as harmonics, if they have a nonzero temporal frequency, and as

base-flow modifications, if they are steady. At O(ε2), the equations for each of these terms

then read

−L0qδ = −C∇ · τ0, (A9)

−L0qAĀ = −C(uA · ∇1ūA + ūA · ∇−1uA), (A10)

−L0qFF̄ = −C(uF · ∇−mf
ūF + ūF · ∇mf

uF ), (A11)

(2iBωc −L−2)qAA = −C(uA · ∇−1uA), (A12)

(iB(ωc + ωf )−Lmf−1)qAF = −C(uA · ∇mf
uF + uF · ∇−1uA), (A13)

(iB(ωc − ωf )−L−mf−1)qAF̄ = −C(uA · ∇−mf
ūF + ūF · ∇−1uA). (A14)

The notation ∇m is used for the ∇ operator where, again, θ-derivatives are replaced with

multiplications by im. We have also introduced the symbols uX and τX to represent the

velocity field u and stress tensor τ derived from the state qX .

Equation (A9) governs the correction to the base flow that arises from our slight su-

percriticality. The other harmonics and base-flow modifications are given by the resolvent

problems (A10)-(A14) and represent the terms that stem from the non-linear interactions

between the forcing, the unstable mode and their associated conjugates. In particular,

qAĀ represents the base-flow modification caused by the unstable mode, qFF̄ represents the

base-flow modification caused by the forcing, qAA represents the harmonic caused by the

unstable mode interacting with itself, and qAF̄ and qAF represent the harmonics caused by

the unstable mode interacting with the forcing.
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In order to obtain an equation for the amplitude of the unstable mode, we assume that

the amplitude A evolves on the slow time scale T = ε2t, i.e., A = A(T ). This means that at

O(ε3) we obtain

uA
dA

dT
= (ηδ − |F |2µ)A− νA|A|2 (A15)

where

µ = uA · ∇0uFF̄ + uFF̄ · ∇−1uA + ūF · ∇mf−1uAF + uAF · ∇−mf
ūF +

uF · ∇−(mf+1)uAF̄ + uAF̄ · ∇mf
uF , (A16)

η = − (uA · ∇0uδ + uδ · ∇−1uA +∇−1 · τA) , (A17)

ν = uA · ∇0uAĀ + uAĀ · ∇−1uA + ūA · ∇−2uAA + uAA · ∇1ūA. (A18)

To reduce the vector equation (A15) to a scalar equation we take the inner product 〈·, ·〉 of

(A15) with u†A where the state q†A is given by the solution of the adjoint eigenvalue problem

L†−1q
†
A = −iωcB†q†A. (A19)

The adjoint operator L†−1 is chosen so that the relation 〈a,L−1b〉 = 〈L†−1a, b〉, is satisfied for

all vectors a and b. An analogous relation can be used to also obtain B†. By choosing the

adjoint eigenvector for the inner product, we ensure that we satisfy the Fredholm alternative

and that the resulting scalar equation

dA

dT
=
(
ηδ − |F |2µ)

)
A− νA|A|2, (A20)

has a unique solution [35]. The inner product used is

〈a, b〉c =

∫∫
aHb rdrdx, (A21)

which is discretised to 〈a, b〉W = aHWb, with W as a positive definite weight matrix. As

most of our vectors have no pressure component, we will use 〈x,y〉 to denote the inner

product with the pressure component removed, where x and y have the same dimension as

the velocity vector. We normalize the direct and adjoint eigenvectors such that 〈uA,uA〉 = 1

and 〈u†A,uA〉 = 1. The scalar coefficients in (5) are then obtained via µ = 〈u†A,µ〉, η =

〈u†A,η〉 and ν = 〈u†A,ν〉.
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2. Forcing with mf = 0 and ωf = 0

For the case of mf = 0 and ωf = 0, we use the asymptotic scaling F ′ = ε2F , and search

for solutions of the form

q = q0 + ε
[
AqAe

−iθ+iωct + c.c.
]

+ ε2
[
FqF + δqδ + |A|2qAĀ +

(
A2qAAe

−2iθ+2iωct + c.c.
)]
, (A22)

where −L0qF = 2Cf . Following the analysis as before, we obtain a similar amplitude

equation
dA

dT
= (ηδ + Fµ)A− νA|A|2, (A23)

where the new forcing-dependent amplitude equation parameter is given by

µ = −
〈
u†A, uA · ∇0uF + uF · ∇−1uA

〉
. (A24)

As in the non-resonant case, the forcing can affect the linear growth rate of the mode. It is

more efficient than harmonic forcing, though, as it acts at O(ε2), and consequently, requires a

smaller amplitude to have an effect. We can also see that as the forcing amplitude F appears

rather than |F |2, that we can obtain either a stabilising or destabilising effect depending on

the sign of F .

3. Forcing with mf = −1 and ωf ≈ ωc

For near-resonant forcing with mf = −1 and ωf ≈ ωc, we use the scaling F ′ = ε3F and

write the forcing frequency as ωf = ωc + Ω′, in terms of the detuning parameter Ω′ = ε2Ω.

We search for solutions of the form

q = q0 + ε
[
AqAe

−iθ+iωct + c.c.
]

+ ε2
[
δqδ + |A|2qAĀ +

(
A2qAAe

−2iθ+2iωct + c.c.
)]
. (A25)

This leads to an amplitude equation with an external forcing term

dA

dT
= ηδA− νA|A|2 + µFeiΩT , (A26)

with the forcing-dependent parameter µ = 〈u†A, f〉. The amplitude oscillates over the slow

time scale. As the forcing amplitude increases, the flow responds at the forcing frequency,

exhibiting ‘lock-on’. The amplitude of forcing required is two orders of magnitude lower

than in the non-resonant case.
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4. Forcing with mf = −2 and ωf ≈ 2ωc

For near-resonant forcing with mf = −2 and ωf ≈ 2ωc, we use the scaling F ′ = ε2F and

write the forcing frequency as ωf = 2ωc + Ω′, in terms of the detuning parameter Ω′ = ε2Ω.

We search for solutions of the form

q = q0 + ε
[
AqAe

−iθ+iωct + c.c.
]

+ ε2
[
δqδ + |A|2qAĀ +

(
A2qAAe

−2iθ+2iωct + c.c.
)

+
(
FqF e

−2iθ+2iωct + c.c.
)]
. (A27)

The amplitude equation has an external forcing term

dA

dT
= ηδA− νA|A|2 + µFĀeiΩT , (A28)

where the forcing-dependent parameter is now given by

µ = −
〈
u†A, uF · ∇1ūA + ūA · ∇−2uF

〉
. (A29)

The amplitude of forcing required for ‘lock-on’ is one order of magnitude lower than in the

non-resonant case.

Appendix B: Numerical convergence of parameters for different sized meshes and

levels of grid refinement

This appendix lists the unstable eigenvalue as well as the amplitude equation parameters

for mf = 0 and ωf = 1.3. Three values of grid refinement parameter nr are used as well

as three different-sized domains, which have varying longitudinal and radial downstream

boundary extents.

nr Our domain Medium domain Larger domain

1 5.59× 10−5 + 2.092i 1.48× 10−3 + 2.094i −3.34× 10−3 + 2.104i

1.5 −4.71× 10−6 + 2.096i 1.53× 10−3 + 2.095i −3.57× 10−3 + 2.106i

2 −4.66× 10−4 + 2.100i 1.66× 10−3 + 2.095i −3.57× 10−3 + 2.106i

TABLE IV. The unstable mode for different domain sizes and mesh refinements. The larger

domain has extent routlet = 6 and xoutlet = 80. The medium domain has extent routlet = 4.5 and

xoutlet = 60.
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nr µ η η

1 −520.641 + 1028.15i 265.084− 7.33649i 31.9202 + 32.9629i

1.5 −532.967 + 1039.68i 267.728− 7.72871i 32.3236 + 33.1606i

2 −532.965 + 1033.51i 268.385− 7.14049i 32.4255 + 32.9378i

TABLE V. Convergence of equation parameters on the domain used for our results.

nr µ η η

1 −522.859 + 1032.03i 269.482− 13.669i 32.8235 + 33.0756i

1.5 −529.730 + 1042.77i 269.307− 14.698i 32.3910 + 33.2808i

2 −534.125 + 1046.85i 270.752− 15.713i 32.9828 + 33.4133i

TABLE VI. Convergence of equation parameters on the medium domain.

nr µ η η

1 −499.027 + 973.568i 267.631− 1.00579i 31.8910 + 32.8924i

1.5 −508.404 + 982.173i 267.491− 0.74688i 31.6760 + 32.7157i

2 −510.551 + 983.772i 268.079− 1.78654i 32.2247 + 32.7137i

TABLE VII. Convergence of equation parameters on the larger domain.
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