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Non-normality and nonlinearity
in thermoacoustic instabilities

RI Sujith1, MP Juniper2 and PJ Schmid3

Abstract

Analysis of thermoacoustic instabilities were dominated by modal (eigenvalue) analysis for many decades. Recent pro-

gress in nonmodal stability analysis allows us to study the problem from a different perspective, by quantitatively

describing the short-term behavior of disturbances. The short-term evolution has a bearing on subcritical transition

to instability, known popularly as triggering instability in thermoacoustic parlance. We provide a review of the recent

developments in the context of triggering instability. A tutorial for nonmodal stability analysis is provided. The applic-

ability of the tools from nonmodal stability analysis are demonstrated with the help of a simple model of a Rjike tube. The

article closes with a brief description of how to characterize bifurcations in thermoacoustic systems.
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Introduction

When Yuri Gagarin was launched into orbit in 1961 on a
Vostok 1, the probability of a rocket blowing up on take-
off was around 50%.1 In those days, one of the most
persistent causes of failure was a violent oscillation
caused by the coupling between acoustics and heat
release in the combustion chamber. These thermoacous-
tic oscillations have caused countless rocket engine and
gas turbine failures since the 1930s and have been studied
extensively.2 Nevertheless, they are still one of the major
problems facing rocket and gas turbine manufacturers
today.3 A short history of thermoacoustic oscillations
in liquid-fueled rockets, gas-fueled rockets, solid-fueled
rockets, ramjets, afterburners, and gas turbines can be
found in section 1.2 of Culick.2

Rockets, jet engines, and power generating gas tur-
bines are particularly susceptible to coupling between
heat release and acoustics because they have high
energy densities and low acoustic damping. The energy
densities are roughly 10GWm�3 for liquid rockets,
1GWm�3 for solid rockets, and 0.1GWm�3 for jet
engines and afterburners. The acoustic damping is low
because combustion chambers tend to be nearly closed
systems whose walls reflect sound. Consequently, high
amplitude acoustic oscillations are sustained even when
a small proportion of the available thermal energy is con-
verted to acoustic (mechanical) energy. Furthermore,

because so much thermal energy is available, the existence
and amplitude of thermoacoustic oscillations tend to
be very sensitive to small changes in the system and there-
fore difficult to predict.

Entropy, vortical, and acoustic waves

In order to achieve high energy densities, the combus-
tion inside rocket and jet engines is highly turbulent.
It might seem surprising that long wavelength acoustic
waves can become so strong, given that the heat release
fluctuations associated with turbulent combustion
occur on small time and length scales. To explain
this, it helps to consider small amplitude perturbations
to the flow in a combustor. These can be decomposed
into entropy waves (hot spots), vorticity waves, and
acoustic waves. These waves interact at boundaries
and in the combustion zone. The interaction in the
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combustion zone is central to this article. They also
interact if the mean flow is not uniform or if perturb-
ations are large enough to be nonlinear.

In order for thermal energy to be converted to mech-
anical energy, higher heat release must coincide with
higher pressure, and lower heat release must coincide
with lower pressure. Small entropy and vorticity waves
do not cause appreciable pressure perturbations and
therefore cannot contribute to this mechanism by them-
selves. Acoustic waves, however, cause both pressure
and velocity perturbations. These perturbations
change the entry conditions to the combustor, causing
entropy and vorticity fluctuations within the combus-
tor. These then lead to fluctuating heat release, in time
with the pressure waves. Thermal energy is thereby con-
verted to mechanical energy, usually building up over
many cycles and usually preferring long wavelengths, at
which the pressure is more coherent over the combus-
tion zone. This explains why classical acoustic waves
are the predominant feature of thermoacoustic oscilla-
tions even though combustion chambers contain highly
turbulent flow, which comprises predominantly entropy
and vorticity waves.

In this article, entropy and vorticity waves will be
neglected outside the combustion zone. It is important
to recognize, however, that this precludes the study of
some influential feedback mechanisms, such as entropy
waves passing through a convergent nozzle and radiat-
ing pressure waves back into the combustor.4

Linear analysis of the steady base flow

The simplest starting point for the study of thermoa-
coustic oscillations is a linear stability analysis of the
steady base flow. This either considers the behavior of
perturbations that are periodic in time, or the response
to an impulse. In both cases, the system is said to be
linearly stable if every small perturbation decays in time
and linearly unstable if at least one perturbation grows
in time. These analyses have been performed on all
types of rocket and gas turbine engines2 and are used
in network models, which predict the stability of indus-
trial gas turbines. Most of the analysis in the last
50 years has been linear.

Nonlinear analysis

If a combustor is linearly unstable, the amplitude of
infinitesimal thermoacoustic oscillations grows expo-
nentially until their amplitude becomes so large that
nonlinear behavior overwhelms the linear behavior. In
the simplest cases, the system reaches a constant amp-
litude periodic solution. In other cases it can reach
multi-periodic, quasi-periodic, intermittent, or chaotic
solutions.5–9

The operating point at which the combustor transi-
tions from linear stability to linear instability is called a
bifurcation point. If the system’s behavior around this
point is periodic, it is called a Hopf bifurcation. The non-
linear behavior around this point is particularly crucial.
On the one hand, if the growth rate decreases as the oscil-
lations’ amplitude increases, then the steady state ampli-
tude grows gradually as the operating point passes
through the Hopf bifurcation. This is known as a super-
critical bifurcation. On the other hand, if the growth rate
increases as the oscillations’ amplitude increases, then the
steady state amplitude runs away as the operating point
passes through the Hopf bifurcation point, until a higher
order nonlinearity acts to limit it. This is known as a
subcritical bifurcation. The range of operating conditions
in which the system can support a stable nonoscillating
solution and a stable oscillating solution is known as the
bistable region. The behavior observed in this region
depends on the history of the system. We will return to
this in §1.6 and say more about bifurcations in §2.

Sources of nonlinearity

There are three main sources of nonlinearity in com-
bustion systems: (1) nonlinear gas dynamics, which
become significant when the velocity of the acoustic
perturbations is not small compared with the speed of
sound and is quantified by the acoustic Mach number;
(2) nonlinear heat release rate, which becomes signifi-
cant when the velocity of the acoustic perturbations is
not small compared with that of the mean flow;10 (3)
nonlinear damping.

Nonlinear gas dynamics are particularly relevant for
rocket motors, in which the energy densities are very
high and the acoustic Mach number is large.11–15 An
important conclusion of these studies is that systems
that have linear heat release rate and nonlinear gas
dynamics from first to third order do not exhibit sub-
critical bifurcations.16

As well as in the above references, nonlinear heat
release has been examined by Refs.17–20 Nonlinear heat
release rate can cause subcritical bifurcations, whether
the gas dynamics are linear or nonlinear. In general, the
heat release rate is a function of the velocity and pressure
fluctuations. For solid rocket engines, pressure fluctu-
ations have the strongest influence. However, for most
other applications, velocity fluctuations have the stron-
gest influence. For these reasons, in this article we will
focus on systems with linear acoustics and in which heat
release rate is a nonlinear function of velocity.

Nonlinear damping mechanisms have been examined
by Matveev,21 who included the amplitude dependence
of acoustic radiation. Nonlinear damping is a very influ-
ential factor in the behavior of thermoacoustic systems
but is not the subject of this article.
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Although much work has been done over the last
50 years, it is mostly in the framework of classical
linear stability analysis. A comprehensive prediction of
the conditions for the onset of instabilities is a difficult
task, which is not yet mastered. In particular, predicting
the limit-cycle amplitude of oscillations remains a key
challenge because little is known, even in a qualitative
sense, about the key parameters controlling nonlinear
flame dynamics, even in simple laminar flames.3

A simple nonlinear thermoacoustic system

The analysis of transient growth and triggering in the
Rijke tube is performed on the Rijke tube, which is a
simple thermoacoustic system. This is an open-ended
duct, through which air passes, with a heat source located
near a quarter length from the end at which air enters. If
the duct is vertical, the air can be driven by natural con-
vection. If it is horizontal, the air must be driven by
forced convection.

Heckl22 studied nonlinear effects leading to limit
cycles in a Rijke tube, both experimentally and theor-
etically. She showed that the most influential
nonlinear effects are nonlinear heat release rate and
nonlinear damping. The former is caused by the reduc-
tion of the rate of heat transfer when the velocity amp-
litudes are of the same order as the mean velocity.
The latter is caused by the increase of losses at the
ends of the tube at very high amplitudes. Hantschk
and Vortmeyer23 also showed that the limit-cycle
amplitude in a Rijke tube is determined by non-
linearities in the heat flux from the heating element to
the flow.

In order to explain the nonlinear effects of a
Rijke tube, Matveev and Culick21,24 constructed a
simple theory by using an energy approach. The equilib-
rium states of the system are found by balancing ther-
moacoustic energy input and acoustic losses. Their work
reaffirmed that the nonlinearity of the unsteady heat
transfer is a dominant factor in determining the limit-
cycle amplitude. Furthermore, Matveev and Culick25

demonstrated the necessity of accurately modeling the
effects of the temperature gradient on the mode shapes
to obtain accurate results for stability.

Yoon et al.26 proposed a nonlinear model of a gen-
eralized Rijke tube. Their model for the oscillatory heat
release rate was not derived from physical principles.
They derived both closed form and numerical solutions
for the acoustic field by an approximate modal analysis
using a two-mode formulation. The two-mode non-
linear model is capable of predicting the growth of
oscillations in an initially decaying system. They refer
to this as the bootstrapping effect, which they say char-
acterizes nonlinear velocity sensitive combustion
response in rocket motors.

Triggering

The concept of a combustor that can sustain oscillations
even when its base flow is linearly stable was introduced
in the Introduction for combustors that have a bistable
region. The question now is whether the system can be
pulsed from the stable base flow to the sustained oscil-
lations, and vice-versa. This is known as ‘‘triggering.’’

Between the stable base flow and the sustained limit
cycle oscillation, there is an unstable limit cycle. This will
be described in more detail in Nonlinearity and bifurca-
tion diagrams. To a first approximation (but only to a
first approximation) if a pulse is big enough to force the
system beyond the unstable limit cycle, and in the right
direction, it will continue to grow to sustained oscilla-
tions. Below this amplitude, it will decay back to the
stable base flow.18

Triggering was first reported in solid rockets in the
1960s.27 The first analyses were performed by Mitchell
et al.28 and Zinn and Lores.29 Examples of triggering
can be found in Culick2 (Fig. 7.49) for solid rocket
engines and liquid rocket engines and10 for a model
gas turbine combustor.

The pulse that causes triggering can be imposed
deliberately, as in tests on the Apollo F1 engine, can
be caused by unforeseen events, such as debris exiting
the choked nozzle of a solid rocket motor (SRM)
during firing or can be caused by background noise
levels.10,30,31 Triggering seems to be common to all
types of thermoacoustic system, although probably
not to each individual system.

As well as identifying the unstable limit cycle as a
threshold for the onset of triggering,18 also discovered
that the phase and frequency content of the initial pulse
is influential. In particular, Wicker et al.18 found that,
in order to cause triggering, most of the pulse’s energy
must be contained in the fundamental acoustic mode.
This can be explained by nonlinearity alone. However,
the fact that triggering in some systems seems to be
provoked by nothing more the background noise, can
only be explained by non-normality.

Non-normality

The non-normal nature of themoacoustic oscillations has
not received any attention until recently. It is a linear
phenomenon and is usually investigated for infinitesimal
perturbations around a steady base flow. It can equally
well be calculated around periodic solutions, however32,33

in which case it measures the transient growth of infini-
tesimal perturbations away from a periodic solution.

Nicoud et al.34 have shown that the eigenvectors of a
general thermoacoustic system are nonorthogonal in
the presence of heat release or in the presence of general
complex impedance boundary conditions. Systems with
nonorthogonal eigenvectors are always non-normal
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and this can lead to transient growth of oscillations
even when the eigenvalues indicate linear stability.

The role of non-normality in thermoacoustic oscilla-
tions has been shown in the context of ducted diffusion
flames,35 the Rijke tube Mariappan and Sujith,33,36–38

premixed flames,39 and vortex combustors40 using a
Galerkin type analysis. In more detail, Kedia et al.41

showed that ignoring the linear coupling of the modes
results in significant changes in the linear and nonlinear
system dynamics. Mariappan and Sujith42 investigated
non-normality in the context of pulsed instabilities
in SRMs. Kulkarni et al.43 demonstrated that non-
normality and transient growth can lead to the failure
of traditional controllers that are designed based on
classical linear stability analysis.

Recently, Mariappan et al.44 showed experimentally
that the eigenmodes of a horizontal Rijke tube are non-
orthogonal. Wieczoerk et al.45 studied non-normal effects
for a thermoacoustic system that contains both a source
of entropy fluctuations and a zone of accelerated mean
flow. Zhao46 studied non-normality in a Rijke tube. Kim
and Hochgreb47 studied triggering and transient growth
in a model gas turbine combustor. Waugh et al.48 and
Waugh and Juniper30 numerically and Jagadesan and
Sujith31 experimentally studied noise induced transition
to instability and the role played by non-normality in a
Rijke tube. Mangesius and Polifke49 adopted a discrete-
time, state-space approach for the investigation of non-
normal effects in thermoacoustic systems.

In systems with no bistable region, non-normality is
just a curiosity. It increases the rate at which sustained
oscillations are reached, but it is not the cause of them
being reached. Its only substantial effect is to change a
system’s sensitivity to external noise.50

In systems with a bistable region, however, non-
normality plays a critical role in triggering. In the sub-
critical region, perturbations can grow transiently away
from the steady base flow and grow transiently around
the unstable periodic solution. This means that non-
normality helps triggering to occur from pulses that
have less energy than that of the unstable periodic solu-
tion. The first clues to this behavior could be found in
the observation of Wicker et al.18 that most of the
energy must be in the first mode and that the phase
and frequency content of the pulse is critical. The aim
of this article is to explain why this is.

In summary, there are two distinct aspects of com-
bustion acoustic interactions: (1) nonlinearity; (2) non-
orthogonality of the eigenmodes of the linearized
system. The objective of this article is to highlight
these aspects, particularly in the context of subcritical
bifurcations. The rest of this article is organized as
follows. Nonlinearity and bifurcation diagrams are
first introduced. Then we present a tutorial on nonmo-
dal stability analysis, together with its consequences in

the context of thermoacoustic instabilities. Next, we
present a simple ‘‘toy model’’ for a horizontal Rijke
tube, which has many features of a thermoacoustic
system. Non-normality and its consequences in subcri-
tical transition to instability are then explained,
using this model. We then proceed to present studies
on transient growth in more complex systems. Finally
methodologies to characterize bifurcations, both
experimentally and numerically, are presented.

Nonlinearity and bifurcation diagrams

Two systems with the same control parameter, R, are
shown in Figure 1 in order to demonstrate two types of
bifurcation. In flow instability, R is usually a Reynolds
number. In thermoacoustics, R could be a heat release
parameter or a geometric quantity such as the position
of a flame within a combustion chamber. R is plotted
on the horizontal axis and some measure of the ampli-
tude of the system, a, is plotted on the vertical axis. In
an oscillating system, this is often the peak-to-peak
amplitude of the oscillations.

At low values of R, there is a single solution with
zero amplitude, which is called a fixed point. The
growth rate of the amplitude of infinitesimal linear per-
turbations around this fixed point, (da/dt)/a, can be
calculated, usually by finding the eigenvalues of the
associated linear stability operator. If all the eigen-
values are stable then all the infinitesimal perturbations
around the fixed point have negative growth rate and
the fixed point is stable. An example of a stable fixed
point in fluid mechanics is the steady and stable flow
around a cylinder at Reynolds number less than 45.
An example in thermoacoustics is the Rijke tube
whose heater is placed three quarters of a length from
the end at which the air enters.

When R reaches Rl, at least one pair of eigenvalues
around the fixed point becomes unstable and the ampli-
tude of the infinitesimal perturbations starts to grow
exponentially, that is (da/dt)/a is a positive constant.
This is the Hopf bifurcation point mentioned in the
introduction. The fixed point remains a solution of the
governing equations but is unstable, shown by a dashed
line in Figure 1. An example of this unstable fixed point
is the steady flow around a cylinder at Reynolds num-
bers above 45 (e.g., Fig. 5 in Giannetti and Luchini51). It
can be calculated numerically but cannot be achieved
experimentally without active control.

As the perturbations grow, nonlinearities become
significant and the growth rate, (da/dt)/a, becomes a
function of a. At a certain amplitude, the growth rate
reaches zero and the state reaches a periodic solution,
which is also known as a limit cycle. The stability of this
solution can be examined by considering the growth
rate of infinitesimal perturbations around one period.
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This is called a Floquet analysis. If all perturbations
have negative growth rate then it is stable, shown by
solid lines in Figure 1. If at least one perturbation has
positive growth rate then it is unstable, shown by
dashed lines in Figure 1.

The nonlinear behavior around the Hopf point at
Rl is particularly crucial. If the growth rate, (da/dt)/a,
decreases as a increases then the steady state ampli-
tude of periodic solutions, aSS, is a gradually growing
function of R for R>Rl. This is known as a super-
critical bifurcation (Figure 1(a)). If the growth rate
increases as a increases then the amplitude, a, runs
away as R increases through the Hopf point until a
higher order nonlinearity acts to limit it. In the latter
case, there is a periodic solution that continues from
the Hopf point, but it lies at R<Rl and it is unstable
(Figure 1(b)). This is known as a subcritical
bifurcation.

For subcritical bifurcations there is a range of R over
which the system can support both a stable fixed point
and a stable periodic solution. This range is called the
bistable region. It is bounded on one side by the Hopf
bifurcation point, Rl, and on the other by the fold
point, Rc, below which there are no periodic solutions.
The final state of the system at these values of R
depends on its history.

The rate of change of energy with time, dE/dt, can
also be calculated for the nonlinear system. The max-
imum value of R that gives dE/dt< 0 for all states gives
a bound for absolute stability, Re. Although conceptu-
ally useful, this bound is usually not practically useful
because it often much smaller than the value at the fold
point, Rc. If the linear stability operator is normal and
if the nonlinear terms conserve or dissipate energy, then
the bifurcation is supercritical and Re coincides with Rc

and Rl. More detail will be given later. Benard convec-
tion and Von-Karman vortex shedding are examples of
situations in flow instability that become unstable
through supercritical bifurcations. In these situations,

a linear stability analysis around the fixed point deter-
mines Rl, Re, and Rc accurately.

Periodic solutions and fixed points can be calculated
with continuation analysis programs such as AUTO
and DDE Biftool. The first example of such tools
being applied to thermoacoustics by Jahnke and
Culick52 and they have since been used extensively.
Until recently, they have been limited to a few tens of
degrees of freedom but systems with several thousand
degrees of freedom can be considered now.53,54

Periodic solutions are not the only possible solutions
to nonlinear differential equations. There can also be
multi-periodic, quasi-periodic, and chaotic solutions.
These solutions have multiple local peaks at each
value of the control parameter R. These types of solu-
tion appear in thermoacoustic models such as Figs. 4
and 6 in Sterling and Zukoski [5 and in thermoacoustic
experiments such as Gotoda et al.55 and Kabiraj et al.7

Non-normality and transient growth

Principles of nonmodal stability analysis

Nonmodal stability theory is concerned with the accur-
ate quantitative description of disturbance behavior gov-
erned by a linear non-normal evolution operator. It has
its origin in scientific studies from the late 1980s and
early 1990s,56–62 even though various aspects and fea-
tures can be traced back to much earlier investigations
or observations. Since these early days, nonmodal sta-
bility theory has evolved and matured significantly, is
now applied rather routinely across a wide range of
applications and flow configurations,63 and has found
its place within hydrodynamic stability theory in particu-
lar and fluid dynamics in general.32,64 In its approach,
nonmodal stability theory distinguishes itself from the
traditional view of assigning significance to individual
eigenvalues; rather, it describes the complete dynamics
of the flow as a superposition of many eigensolutions.
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Figure 1. The steady state oscillation amplitude, aSS, as a function of a control parameter, R, for (a) a supercritical bifurcation and (b)

a subcritical bifurcation. Rl is the point at which the fixed point (i.e., the zero amplitude solution) becomes unstable. Rc is the point

below which no oscillations can be sustained and Re is the point below which all perturbations decrease monotically to zero.
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In this superposition the decay/growth and oscillatory
characteristics (given by the eigenvalues) are as import-
ant as the angle between the individual eigenfunctions.
In what follows we will give a basic introduction to fun-
damental concepts underlying nonmodal stability ana-
lysis. Particularly, we will demonstrate these concepts
on rather small model-systems; this approach should
make the essential components of nonmodal analysis
more transparent and lay the foundation for applica-
tions to systems with more degrees of freedom and
more complex behavior.

Linear analysis of non-normal systems. The simplest cat-
egory of governing equations is given by the class of
linear time-invariant (LTI) systems which can simply be
described by the temporal evolution equation

d

dt
q ¼

8

q qð0Þ ¼ q0 ð1Þ

where the matrix

8

stands for the spatially discretized
governing equations and q denotes the spatially discre-
tized state-vector describing the flow disturbance. An
even more drastic simplication is the reduction to only
two degrees of freedom resulting in an evolution equa-
tion of the form

d

dt

q1
q2

� �
¼

1

100
�

1

Re
1

0 �
2

Re

0B@
1CA q1

q2

� �
ð2Þ

together with appropriate initial conditions. A param-
eter Re has been introduced to mimic the dependence

on a Reynolds number. The particular form of the
system matrix

8

allows us to determine the eigenvalues
of the system as �1 ¼ 1=100� 1=Re and �2 ¼ �2=Re;
the first one changes sign at a critical value of the
Reynolds number (Recrit¼ 100), the second one is
always negative. For Reynolds numbers Re< 100 we
thus have a stable system.

Taking a more general (less asymptotic) approach to
stability theory, we are interested in the maximum tem-
poral amplification G(t) of perturbation energy gov-
erned by equation (2) over a finite time span t.
Mathematically, this amounts to63,64

GðtÞ ¼ max
q0

kqðtÞk2

kq0k
2
¼ max

q0

k expðt

8

Þq0k
2

kq0k
2

¼ k expðt

8

Þk2

ð3Þ

where the square of the norm of the state vector q sym-
bolizes the kinetic energy of the disturbance. In the
above expression we have used the matrix exponential
expðt

8

Þ as the formal solution of equation (2) as well as
the definition of an induced matrix norm. The quantity
G(t) then describes the largest possible energy amplifi-
cation of any initial condition over a time interval [0, t].

Figure 2(a) shows the maximum energy amplifica-
tion G(t) versus time for three selected Reynolds num-
bers. Short-time energy growth is observed, before G(t)
approaches the exponentially decaying (for Re¼ 50, 80)
or growing (for Re¼ 110) behavior one would expect
from inspection of the eigenvalues. The instantaneous
energy growth rate defined as �ðtÞ ¼ 1

E
dE
dt with

E ¼ kqk2 ¼ hq, qi is given in Figure 2(b) for the same
three Reynolds numbers, with the asymptotic values

(a) (b)

Figure 2. (a) Energy amplification versus time for the LTI system (equation (1)) for three selected Reynolds numbers. (b)

Instantaneous energy growth rates for the three cases. The asymptotic energy growth rates are indicated on the right edge of the

figure by thick line segments.
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indicated on the right edge of the figure by the thick
colored lines. Again, we observe substantial positive
energy growth rates for short times, before the asymp-
totic values are approached.

To better understand this behavior, a geometric
point of view is taken.32 The solution to the initial
value problem, equation (2) may be expanded in
terms of the eigenvalues �1,2 and eigenvectors �1,2 of
the 2� 2 evolution matrix

8

according to

q ¼ c1�1 expðð1=100� 1=ReÞtÞ þ c2�2 expð�2t=ReÞ

ð4Þ

with the coefficients c1,2 given by the initial condition.
It is easily verified that the two eigenvectors are non-
orthogonal (under the standard inner product); in
fact, the scalar product of �1 and �2 approaches
cos � ¼ 100=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
10001
p

, that is, the eigenvectors become
nearly colinear (�¼ 0.573o) as the Reynolds number
tends to infinity. As a consequence, the coefficients
c1,2 may be substantially larger in magnitude than the
norm of the initial condition we wish to express. For
example, for large Reynolds numbers, the initial state
vector q ¼ ½0, 1�T would require c1 � 100 and
c2 � �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
10001
p

, and the two components in equation
(4) will cancel each other to result in a unit-norm initial
condition. As time progresses, this mutual cancellation
ceases to hold which subsequently gives rise to state
vectors with large norms (or flow states with large ener-
gies) before asymptotic decay/growth eventually sets in.

This type of behavior is illustrated in Figure 3. For
the non-normal case (on the right), we observe that two
large, nonorthogonal vectors, that nearly cancel, are
required to produce the initial condition (indicated by
the thick blue line). We further assume that the decay
along one of the vectors is more rapid (green symbols)
than along the other one (red symbols). The nonortho-
gonal superposition of the two decaying vectors pro-
duces a solution whose norm (length) increases before
it eventually decays to zero. During this process, the
solution progressively aligns itself along the least
stable direction. On the left of the figure, the normal
case is displayed; the initial condition (again, thick blue
line) is represented as a superposition of two orthog-
onal vectors. Their initial length is however on the same
order as the length of the initial condition. As before,
we assume a more rapid decay along one vector (in
green) than along the other (in red). No stretching of
the vector, but rather a monotonic decay, is observed.

Nonorthogonality of the eigenvectors thus enabled the
short-time amplification of initial energy, even though—
based on eigenvalues alone—the system is asymptotically
stable. The reason for the nonorthogonality of the eigen-
vectors lies in the non-normality of the system matrix

8

:
Formally, a non-normal matrix (or operator) does not

commute with its adjoint, which is mathematically
expressed as

88þ 6¼

8þ 8with þ denoting the adjoint.63

From the simple example above, we conclude that
for non-normal LTI-systems of the form (1) eigenvalues
become an asymptotic tool describing the long-term
behavior. The short-term behavior cannot be described
by eigenvalues alone; instead the angle between the
eigenvectors plays an important role in explaining and
quantifying transient growth of energy (or of other
state-vector norms).

If eigenvalues describe the long-term behavior (t!1)
for non-normal systems, we are interested in other sets in
the complex plane that describes the short-time dynam-
ics. One of these sets is given by the numerical range of
the matrix

8

and can be easily derived by reconsidering
the expression for the energy growth rate �(t). We have63

�ðtÞ ¼
1

kqk2
d

dt
hq, qi ¼

1

kqk2
d

dt
q, q

� �
þ

1

kqk2
q,

d

dt
q

� �
¼ 2 Real

h

8

q, qi

hq, qi

� �
:

ð5Þ

The last expression establishes a link between the
energy growth rate � and the set of all Rayleigh quo-
tients h

8

q, qi=hq, qi of our matrix

8

; this set is known as
the numerical range of

8
: It is easy to show that the

numerical range of

8

is a convex set in the complex
plane that contains the spectrum of

8

(the Rayleigh
quotient becomes an eigenvalue of

8

if q is chosen as
an eigenvector). Less obvious is the fact that the numer-
ical range degenerates into the convex hull of the spec-
trum of

8

, if

8

is normal.65 For our case (and a
Reynolds number of Re¼ 10), the numerical range is
plotted in the complex plane, together with the spec-
trum of

8

(Figure 4(a)).
We verify that for non-normal matrices

8

the numer-
ical range is convex and contains the spectrum (the
eigenvalues, illustrated by the two black symbols).
What is more important, however, is that the numerical
range reaches into the unstable half-plane, shaded in
gray. According to equation (5) this means that there
exist positive energy growth rates, despite the fact that
both eigenvalues are confined to the stable half-plane.
Setting the off-diagonal term in

8

to zero yields a diag-
onal—and thus normal—matrix. The numerical range
in this case is given by the convex hull of the spectrum;
this is displayed in Figure 4(b). Rayleigh quotients fall
on a line that connects the two eigenvalues; conse-
quently, the energy growth rates will remain negative
for all times. This is consistent with our earlier findings.

It is interesting and instructive to determine the ini-
tial energy growth rate, that is, the energy growth rate
at t¼ 0þ. For this, we use a Taylor series expansion of
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the matrix exponential for small times, that is,
expðt

8

Þ � Iþ t

8

, to arrive at

�ð0þÞ ¼ lim
t!0þ

1

kq0k
2

d

dt
hq, qi ¼ lim

t!0þ

1

kq0k
2

d

dt
hðIþ t

8

Þq0, ðIþ t

8

Þq0i ¼
hq0, ð

8

þ

8þÞ q0i

hq0, q0i
:

ð6Þ

The final expression represents a Rayleigh quotient
for a normal matrix,

8

þ

8þ, which attains its max-
imum at �maxð

8

þ

8þÞ: This means that the largest
eigenvalue of the matrix

8
þ

8þ, also known as the
numerical abscissa of

8

, gives the largest initial
energy growth rate of our system.32,63

After establishing that for non-normal systems
eigenvalues quantify the dynamic behavior for large
times (t !1), while the numerical range gives infor-
mation about the short time behavior (t¼ 0þ), a third
quantity in the complex plane describes the behavior at
intermediate times—though only approximately. For
asymptotically stable systems the peak Gmax of the
matrix exponential (see the blue and black curve in
Figure 2(a)) can be bounded by

max
RealðzÞ4 0

RealðzÞkðzI�

8

Þ
�1
k �

ffiffiffiffiffiffiffiffiffiffi
Gmax

p
�

1

2�

I
C

kðzI�

8

Þ
�1
k d jzj:

ð7Þ

The lower bound is based on a Laplace transform of
the matrix exponential, while the upper bound stems
from an application of Cauchy’s integral formula
(along a contour C that encloses the spectrum of

8

);
details of these bounds are given elsewhere.63,66 It is
interesting to note, however, that both bounds involve
the quantity ðzI�

8

Þ
�1 which is referred to as the

resolvent and is defined in the complex plane (z 2 C),
with pole singularities where z coincides with an

eigenvalue of

8

: It seems appropriate then to consider
the norm of the resolvent in the complex plane. This
has been done in Figure 4 where contour lines of con-
stant resolvent norm have been added in gray. For the
normal case (Figure 4(b)) the resolvent contours degen-
erate to concentric circles around the two eigenvalues,
with the contour levels dropping inversely proportional
to the distance to the closest eigenvalue. For the non-
normal case (Figure 4(a)) the contours of the resolvent
norm show values that exceed the inverse distance to
the closest eigenvalue. We conclude from equation (7)
and from Figure 4 that the resolvent value away from
the eigenvalues plays a significant role. In other words,
one should not only concentrate on the singularities of
the resolvent (the eigenvalues), regions of the complex
plane where the resolvent is not infinite but nevertheless
large (compared to the one-over-distance behavior) are
equally important.32,64,66,67

In summary, non-normal systems with their non-
orthogonal eigenvectors exhibit a rich dynamical
behavior which requires more complex tools to describe
and quantify. For short times, the numerical range
determines the initial energy growth rate; for intermedi-
ate times, expressions based on the resolvent can
be used to approximate the maximum transient
growth; and only for asymptotically large times do
the eigenvalues describe the system’s behavior. For
normal systems, these three tools collapse into one:
the numerical range is the convex hull of the spectrum,
and the resolvent is given by a one-over-distance
function to the spectrum; both quantities carry no
more information than the eigenvalues themselves.
The eigenvalues are thus the only quantity one has to
consider; for normal systems they describe the dynamic
behavior for all times.

For non-normal systems that exhibit substantial
transient growth, it is often interesting to determine
the specific initial condition that achieves the maximum
energy amplification Gmax or the maximum energy
amplication at a prescribed time. By its definition (3),
the norm of the matrix exponential GðtÞ ¼ k expðt

8

Þk2

contains an optimization over all initial conditions, and

Figure 3. Geometric sketch of energy growth/decay in a two-dimensional orthogonal (left) and nonorthogonal (right) system. In

either case, the two vector components contract, ultimately yielding a solution vector of zero length. In the normal case, monotonic

decay toward a zero-length solution is observed; in the non-normal case, transient growth prevails before the asymptotic limit of a

zero-length vector is reached.

126 International Journal of Spray and Combustion Dynamics 8(2)



the curves in Figure 2 thus represent envelopes over
many individual realizations; each point on these
optimal curves may have been generated by a different
initial condition. To recover the specific initial condi-
tion that produces optimal energy amplification at a
given time � we write

expð�

8

Þq0 ¼ k expð�

8

Þkq� ð8Þ

which states that the unit-norm initial condition q0 is
propagated over a time span � by expð�

8

Þ resulting in
another unit-norm state vector q� that is multiplied by
the amplification factor k expð�

8

Þk: Expression (8) is
reminiscent of a singular value decomposition (SVD),
namely CV ¼ U� with V and U as unitary matrices
with orthonormalized columns and � as a diagonal
matrix. Recalling that �1 (the dominant singular
value) is kCk, the principal component of the SVD
reads Cv1 ¼ u1kBk where v1 and u1 denote the first
column of V and U: Comparing this last expression
with (8) we identify q0 as first column of the right sin-
gular vectors and q� as the first column of the left sin-
gular vectors of expð�

8

Þ: The computational procedure
to determine the optimal initial condition for a pre-
scribed time � consists of a SVD of the propagator
expð�

8

Þ from which the optimal initial condition q0 fol-
lows as the principal right singular vector, the optimal
output q� is given by the principal left singu-
lar vector.32,64 An elaborate discussion of SVD in
the context of a thermoacoustic system is given in
Kedia et al.68

Extensions and further results of nonmodal analysis. The de-
emphasis of eigenvalues for describing the dynamic
behavior of non-normal systems translates to many
other areas where eigenvalues have traditionally pre-
vailed. One area with important applications in fluid
mechanics is receptivity analysis which is, for example,
concerned with the response of a boundary layer
to external disturbances or to wall roughness. The gov-
erning equations for receptivity constitute a driven
system, and the maximum response in energy to a
unit-energy forcing is often taken as a receptivity meas-
ure. Traditionally, this measure is linked to a resonance
argument. However, resonances are commonly
described by the closeness of the driving frequency to
the eigenvalues of the driven system. For normal sys-
tems, this is a necessary and sufficient condition for a
large response; for non-normal systems, this eigenva-
lue-based analysis is inadequate. In general, the max-
imum response of a driven system is given by the
resolvent norm. As we have seen above, a large resolv-
ent norm is not necessarily associated with closeness to
an eigenvalue, when the system is non-normal. In this
case, large responses can also be generated for driving
frequencies that are far from any eigen-frequency of the
system. A resonance of this type is often referred to as a
pseudo-resonance.61 These concepts are becoming
increasingly important in receptivity analysis, but also
in flow control and model reduction efforts.

The existence of transient amplification of energy at
subcritical parameter values raises the question whether
this amplification is sufficient to trigger nonlinear
effects.69–71 To investigate this question, we will study

(a) (b)

Figure 4. (a) Boundary of the numerical range (in red) and spectrum (in black symbols) of the non-normal matrix

8

for Re ¼ 10:
(b) Boundary of the numerical range (in red) and spectrum (in black symbols) of

8

when the off-diagonal term is set to zero, thus

rendering

8

a normal matrix.
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the nonlinear system

d

dt

q1

q2

� �
¼

1

100
�

1

Re
1

0 �
2

Re

0B@
1CA q1

q2

� �

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q21 þ q22

q 0 �1

1 0

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

B

q1

q2

� � ð9Þ

which has the same linear operator as before. The
nonlinear terms have been chosen to preserve energy,
that is, qHBq ¼ 0, thus mimicking the nonlinear
terms of the incompressible Navier–Stokes equations.
Figure 5(a) displays simulations for Re¼ 50 starting
with the initial condition q0 ¼ Að0, 1ÞT of increasing
amplitude A. For sufficiently small initial amplitude A
we observe the familiar scenario of short-term transient
growth followed by an asymptotic decay. As the initial
amplitude surpasses a critical value Acrit nonlinear
effects will pull the phase curves toward a non-zero
steady state. In Figure 5(a), we see a rapid increase in
energy and an oscillatory settling into a flow state with
E ¼ 1: For still higher initial amplitudes this unit-
energy flow state is reached more quickly. It is import-
ant to realize that the nonlinear term cannot produce
energy by itself; it simply redistributes energy from
decaying directions in phase-space to transiently grow-
ing ones, thus harvesting the full potential for transient
growth by a nonlinear feedback mechanism. This mech-
anism is often referred to as bootstrapping.61

The question then arises about the critical initial
amplitudes Acrit that delineate attraction to the

nonlinear unit-energy state from decay toward the
zero-energy solution. These triggering amplitudes
are part of a bifurcation diagram and, in general, are
very difficult to determine since they involve an
optimization of a nonlinear system over all admissable
initial conditions. For our case of a 2� 2, the optimiza-
tion can be accomplished rather straightforwardly. The
results are given in Figure 5(b); it presents the critical
amplitudes (optimized over all initial conditions) versus
the Reynolds number (as blue symbols). For initial
amplitudes above this line, we can approach the non-
linear steady state (indicated by green symbols); for
amplitudes below this line, we decay toward the ‘‘lam-
inar’’ state. The critical amplitude becomes zero for
Re> 100 since a linear modal instability will amplify
even infinitesimal perturbations until the nonlinear
(E¼ 1)-state is reached.

A bifurcation like the one depicted in Figure 5(b) is
known as a subcritical bifurcation. In this case, finite-
amplitude states become unstable before the infinitesi-
mal state does. As a consequence, over a finite range
of Reynolds numbers two stable states coexist: the
stable infinitesimal state (which is reached, if the initial
amplitude is less than the critical one) and the stable
finite-amplitude state (which can be reached, if the ini-
tial amplitude exceeds the critical one). In contrast,
a bifurcation is labelled supercritical if finite-amplitude
states become unstable after the infinitesimal state
has become unstable. Fluid mechanics knows a wide
range of phenomena and configurations that fall
either into the subcritical (e.g., wall-bounded shear
flows) or the supercritical (e.g., Rayleigh–Bénard con-
vection) category.

(a) (b)

Figure 5. (a) Perturbation energy versus time for the nonlinear system (equation (9)) starting with q0 ¼ Að0, 1ÞT and four different

amplitudes A. (b) Bifurcation diagram for the nonlinear system (equation (9)), indicating the triggering amplitudes (blue symbols) and

the nonlinear steady state (green symbols). The critical Reynolds number is Recrit ¼ 100.
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For nonlinearities that preserve the energy norm, as
is the case for our 2� 2 system and is the case for the
incompressible Navier–Stokes equations, there is an
interesting link between the bifurcation behavior
(supercritical/subcritical) and the non-normality of the
linear operator. A non-normal linear operator is neces-
sary for a subcritical bifurcation behavior, since—in the
absence of energy production by nonlinear terms—only
a linear operator will provide the required energy amp-
lification to reach the nonlinear steady state. This linear
energy amplification mechanism has to be active even
before modal (eigenvalue) instabilities are present; only
a non-normal operator can accomplish this. In other
words and in reference to Figure 4(a), the numerical
range has to cross into the unstable half-plane before
the eigenvalues do. This can only be true of a non-
normal operator, where the numerical range is detached
from the spectrum. On the contrary, a normal linear
operator can only cause a supercritical bifurcation
behavior. In this case, energy growth and modal
growth toward a finite-amplitude steady-state occur at
the same parameter value (in our case, the Reynolds
number), since the numerical range is attached to the
least stable mode; both, the numerical range and
the least stable mode cross into the unstable half-
plane at the same critical parameter. It is important
to stress that non-normality is a necessary condition
for subcritical behavior and that normality is a suffi-
cient condition for supercritical behavior; in addition,
the above arguments only hold when nonlinearities pre-
serve energy. In the case of thermoacoustic systems
studies so far indicate that nonlinearities are not
energy conserving.

Non-normal linear systems play an important role in
many physical processes. The above tools (matrix expo-
nential, resolvent, numerical range, etc.) give a means
to isolate and quantify effects due the non-normality of
the underlying linear system. The first indication of
non-normality that is often encountered in numerical
experiments is a marked sensitivity of eigenvalues to
minute perturbations. In Figure 6 we perturb the
system matrix

8

by a random matrix E of norm 10�2

and display the eigenvalues of

8

þ E for multiple real-
izations.63,64,67 For the non-normal case (Figure 6(a)),
we observe that a small perturbation displaces the
eigenvalues by a disproportionately large amount,
yielding eigenvalues even far in the unstable domain.
The same amount of perturbations has little effect on
the eigenvalues for the normal matrix (Figure 6(b)): the
displacement of the eigenvalue is bounded by the size of
the perturbation. A connection can be made between
the maximum displacement of eigenvalues and the
resolvent norm contour associated with the inverse per-
turbation norm kEk�1:

A more general framework. The analysis of non-normal
systems can be generalized to more complex systems,
beyond simple LTI-systems, by casting it in a vari-
ational framework and by performing the optimization
explicitly, rather than by invoking it via the definition
of an induced matrix norm (as in equation (3)). The
variational formulation allows substantially greater
flexibility in treating fluid problems that do not strictly
fall within the constraints above.72

We are still interested in the maximum energy
growth over a given time span ½0 �� optimized over all

(a) (b)

Figure 6. Sensitivity of eigenvalues for (a) the non-normal system at Re ¼ 50, and (b) the normal system (with zero off-diagonal

term) at the same Reynolds number. In both cases, the matrix A has been perturbed by random matrices of norm 10�2.
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admissible initial conditions; however, rather than
making use of the fundamental solution of our linear
system (as before, by substituting the matrix exponen-
tial in (3)), we instead impose the governing equation
as a constraint via a Lagrangian multiplier p. This
Lagrangian multiplier is also referred to as the adjoint
variable. We get the optimization problem

J ¼
kqð�Þk

kq0k
� p,

d

dt
q�

8

q

� �
! max: ð10Þ

It is evident that this approach is more general: the
governing equations are always known, whereas an
explicit solution is only given under exceptional circum-
stances and/or can be obtained only at substantial
numerical cost. The above functional J is to be max-
imized with respect to all independent variables: q, q0
and p. First variations with respect to these three vari-
ables yield three respective equations

d

dt
q ¼

8

q, ð11Þ

�
d

dt
p ¼

8þp, ð12Þ

q0 ¼
E0

E�
pð0Þ, ð13Þ

with E0 ¼ hq0, q0i and E� ¼ hqð�Þ, qð�Þi: The first two
equations are evolution equations for the direct vari-
able q and the adjoint variable p, respectively. The third
equation (from the first variation of J with respect to
the initial condition q0) provides a link between the
direct and adjoint variables. The above three equations
can be set up as an iterative optimization scheme
sketched in Figure 7.73–76 Starting with an initial
guess, we solve the direct equation (11) over the pre-
scribed interval ½0, ��: The final solution is then propa-
gated backwards in time from t ¼ � to t¼ 0 using the
adjoint equation (12). The solution of the adjoint equa-
tion is then used in equation (13) to update the initial

condition q0 for the next iteration. The direct-adjoint
cycle is repeated until convergence is reached.

The variational framework is not restricted to
enforce only linear evolution equations, it can easily
be applied to compute optimal initial conditions that
maximize transient energy growth when propagated by
a nonlinear equation. In this case, we write

J ¼
kqð�Þk

kq0k
� p,

d

dt
q� fðqÞ

� �
! max: ð14Þ

The derivation of the iterative scheme proceeds
along the same line. After taking the first variation
with respect to the three variables, we recover the non-
linear evolution equation for q, obtain a linear evolu-
tion equation for the adjoint variable p and get an
expression linking q and p. Even though the adjoint
equation is linear in p, its coefficients depend on the
direct variables q. This fact complicates the iterative
optimization scheme, since during the solution of the
direct equation snapshots of q need to stored; these
snapshots are then used (in time-reversed order) to
evaluate the coefficients for the backward-integration
of the adjoint equation (Figure 8).33,77–79 For small-
scale problems (e.g., our 2� 2 model problem), the
storage of all produced fields does not pose a problem,
but for large-scale applications with many degrees of
freedom, memory issues become relevant, and specific
storage strategies have to be employed. Flow fields at
prescribed instants in time (known as checkpoints) are
stored and the coefficients for the backward integration
have to be reconstituted from these checkpoint fields.80

This involves short forward-integrations of the direct
system using the stored checkpoint solutions as initial
conditions. An optimal placement of checkpoints, given
a total amount of available storage, leads to a non-
equidistant spacing in time (not shown in Figure 8).

Application to fluid systems. Over the past decades transi-
ent growth and nonmodal analysis have become

Figure 8. Sketch of iterative optimization scheme based on the

nonlinear, direct and variable-coefficient, adjoint governing

equations, derived from a variational framework. The check-

points at which the direct solutions are stored are indicated by

green symbols.

Figure 7. Sketch of iterative optimization scheme based on the

direct and adjoint governing equations, derived from a variational

framework.
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important and accepted tools of fluid dynamics.32 In
numerous studies, the presence of non-normal linear
operators and its consequence on the dynamic pro-
cesses have been recognized.

In bypass transition, defined as a route to turbulence
that does not rely on an exponential instability, the
importance of linear growth mechanisms that operate
efficiently at subcritical conditions has been acknowl-
edged.81 These mechanisms favor structures in the flow
that markedly deviate from modal ones; in particular,
streaks, that is, fluid elements elongated in the streamwise
direction, have been found as the omnipresent manifest-
ation of nonmodal dynamics. Both numerical simula-
tions and experiments have confirmed their importance.

The same elongated structures also play an import-
ant role in receptivity studies, where perturbations in
the freestream trigger disturbance growth in the bound-
ary layer. In this case, nonmodal processes compete
with modal ones.82

In fully developed turbulent flow, the importance of
a linear mechanism based on non-normality has been
recognized.83,84 In this case, it is part of a self-sustain-
ing process that involves transient energy amplification,
secondary breakdown, and nonlinear regeneration.
Even though the entire cycle is nonlinear, without a
linear non-normal component it would collapse, yield-
ing relaminarized flow.85

Much has been gained in stability theory and fluid
dynamics by abandoning the concept of Lyapunov
(time-asymptotic) stability in favor of a more general,
finite-time stability notion. Most fluid devices or
configurations have an instrinsic time-scale that is
often far shorter than the asymptotic limit required
for Lyapunov stability. Moreover, exponential growth
rates are often too weak to account for significant
energy growth over short or intermediate time intervals.
For this reason, it seems fitting to introduce a charac-
teristic time-scale into the definition of stability and
adopt mathematical tools that describe fluid processes
on a finite rather than infinite time horizon. Some of
these tools have been introduced above. Over the years,
these concepts have provided deeper insight into many
fluid dynamical mechanisms; the same is expected for
thermoacoustic systems.

A toy model for the Rijke tube

A horizontal Rijke tube with an electric heat source is a
convenient system for studying the fundamental prin-
ciples of thermoacoustic instability both experimentally
and theoretically (Figure 9). The mean flow is imposed
by a fan, rather than by natural convection, so the
heater power and the mean flow are controlled
independently. We present here a simple model for
the horizontal Rijke tube, which has been used by

Refs.21,22,24,25,33,36,38,86 A more elaborate model for
the Rijke tube can be found in Mariappan and Sujith.38

Governing equations

The tube has length L0 and a hot wire is placed distance
~xf from one end. A base flow is imposed with velocity
u0. The physical properties of the gas in the tube are
described by cv, �, R, and �, which represent the con-
stant volume specific heat capacity, the ratio of specific
heats, the gas constant, and the thermal conductivity,
respectively. The unperturbed quantities of the base
flow are �0, p0, and T0, which represent density, pres-
sure, and temperature, respectively. From these one can
derive the speed of sound c0 �

ffiffiffiffiffiffiffiffiffiffiffiffi
�RT0

p
and the Mach

number of the flow M � u0=c0.
Acoustic perturbations are considered on top of

this base flow. In dimensional form, the perturbation
velocity and perturbation pressure are represented by
the variables ~u and ~p, respectively and distance and
time are represented by the coordinates ~x and ~t,
respectively. Quantities evaluated at the hot wire’s
position, ~xf, have subscript f. At the hot wire, the
rate of heat transfer to the gas is given by

~_Q. This
heat transfer is applied at the wire’s position by multi-

plying
~_Q by the dimensional Dirac delta distribution

~	Dð ~x� ~xf Þ. Acoustic damping, which will be described

in §4.4, is represented by 
.
The dimensional governing equations for the per-

turbation are the momentum equation and the energy
equation

~F1 � �0
@ ~u

@ ~t
þ
@ ~p

@ ~x
¼ 0, ð15Þ

~F2 �
@ ~p

@~t
þ �p0

@ ~u

@ ~x
þ 


c0
L0

~p� ð� � 1Þ
~_Q ~	Dð ~x� ~xf Þ ¼ 0:

ð16Þ

The heat release is modelled with a form of King’s
law adapted from Heckl,22 in which the heat release
increases with the square root of the velocity. Surface
heat transfer and subsequent thermal diffusion between
the wire and the fluid are modelled by a constant time

Figure 9. Diagram of a horizontal Rijke tube.
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delay, ~�, between the time when the velocity acts and
the time when the corresponding heat release is felt by
the perturbation

~_Q ¼
2LwðTw � T0Þ

S
ffiffiffi
3
p ��cv�0

dw
2

� �1
2

�
u0
3
þ ~uf ð~t� ~�Þ

��� ���12� u0
3

	 
1
2

� �
,

ð17Þ

where Lw, dw, and Tw represent the length, diameter,
and temperature of the wire, respectively and S repre-
sents the cross-sectional area of the tube. Heckl22 based
the off-set of u0=3 on experimental results. It is now
apparent that recent papers have gone beyond the
range of validity of the model, specifically when
u5 � u0=3, and that this caused oscillations to satur-
ate earlier than they should have done. The results are
qualitatively correct, however, and we have decided to
retain Heckl’s law here so that this article is consistent
with previous articles.

The nondimensional governing equations

Reference scales for speed, pressure, length, and time
are taken to be u0, p0�M, L0, and L0=c0, respectively.
The dimensional variables, coordinates, and Dirac
delta can then be written as

~u ¼ u0u, ~p ¼ p0�Mp, ~x ¼ Lx~t ¼ ðL=c0Þt,e	Dð ~x� ~xf Þ ¼ 	Dðx� xf Þ=L,
ð18Þ

where the quantities without a tilde or subscript 0 are
dimensionless.

A remark on nondimensionalizing the acoustic vel-
ocity using the mean flow velocity is called for here. It
has been shown that for systems that work at very low
Mach number, the convective terms in the wave equa-
tion can be neglected.87 However, this thermoacoustic
system is driven by a heat release rate which has a
dependence on the mean convective velocity. Hence,
we choose the include the convective velocity in the
scaling law for acoustic velocity. Further, it is known
when limit cycle is attained, the amplitude of the acous-
tic velocity is of the order of the mean convective vel-
ocity. Scaling the acoustic velocity using the mean flow
velocity leads to a nondimensional acoustic velocity
amplitude of 1, when the acoustic velocity equals the
mean flow velocity.

Substituting equation (18) into the dimensional gov-
erning equations (15) and (16) and making use of the
definition of c0 and the ideal gas law, p0 ¼ �0RT0, gives

the dimensionless governing equations

F1 �
@u

@t
þ
@p

@x
¼ 0, ð19Þ

F2 �
@p

@t
þ
@u

@x
þ 
p

� �
1

3
þ uf ðt� �Þ

���� ����12� 1

3

� �1
2

 !
	Dðx� xf Þ ¼ 0,

ð20Þ

where

� �
1

p0
ffiffiffiffiffi
u0
p
ð� � 1Þ

�

2LwðTw � T0Þ

S
ffiffiffi
3
p ��cv�0

dw
2

� �1
2

ð21Þ

The system has four control parameters: 
, which is
the damping; �, which encapsulates all relevant infor-
mation about the hot wire, base velocity and ambient
conditions; �, which is the time delay, and xf, which is
the position of the wire.

The boundary conditions and the discretized
governing equations

When appropriate boundary conditions in x are set, the
governing equations (19) and (20) reduce to an initial
value problem in t. For the system examined in this
article, @u=@x and p are both set to zero at the ends of
the tube. These boundary conditions are enforced by
choosing basis sets that match these boundary
conditions

uðx, tÞ ¼
XN
j¼1

�jðtÞ cosð j�xÞ, ð22Þ

pðx, tÞ ¼ �
XN
j¼1

_�j ðtÞ

j�

� �
sinð j�xÞ, ð23Þ

where the relationship between �j and _�j has not yet
been specified. In this discretization, all the basis vec-
tors are orthogonal.

The state of the system is given by the amplitudes of
the modes that represent velocity, �j, and those that
represent pressure, _�j=j�. These are given the notation
u � ð�1, . . . , �NÞ

T and p � ð _�1=�, . . . , _�N=N�Þ
T. The

state vector of the discretized system is the column
vector x � ðu; pÞ.

The governing equations are discretized by substitut-
ing equations (22) and (23) into equations (19) and (20).
As described in §4.4, the damping, 
, is dealt with by
assigning a damping parameter, 
j, to each mode.
Equation (20) is then multiplied by sinðk�xÞ and
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integrated over the domain x ¼ ½0, 1�. The governing
equations then reduce to two delay differential equa-
tions (DDEs) for each mode, j

F1G �
d

dt
�j � j�

_�j
j�

� �
¼ 0, ð24Þ

F2G �
d

dt

_�j
j�

� �
þ j��j þ 
j

_�j
j�

� �
. . .

	 	 	 þ 2�
1

3
þ uf ðt� �Þ

���� ����12� 1

3

� �1
2

 !
sinð j�xf Þ ¼ 0,

ð25Þ

where

uf ðt� �Þ ¼
XN
k¼1

�kðt� �Þ cosðk�xf Þ: ð26Þ

Decomposition into a set of coupled oscillator equa-
tions (24)–(25) is a standard technique in thermoacous-
tics and is described in several early papers, such as
Culick.88 Section 4.3–4.4 of Culick2 contains a discus-
sion of this method, called spatial averaging, and the
closely related Galerkin method, which give the same
result for the system in this article.

Damping

For the system examined in this article, p and @u=@x are
both set to zero at the ends of the tube, which means
that the system cannot dissipate acoustic energy by
doing work on the surroundings. Furthermore, the
acoustic waves are planar, which means that the
system cannot dissipate acoustic energy in the viscous
and thermal boundary layers at the tube walls. Both
types of dissipation are modelled by the damping par-
ameter for each mode


j ¼ c1j
2 þ c2j

1=2, ð27Þ

where c1 and c2 are the same for each mode. This model
was used in Balasubramanian and Sujith36 and Kedia
et al.68 and was based on correlations developed by
Matveev21 from models in Landau and Lifshitz.89

The definition of the acoustic energy norm

For the optimization procedure, it is necessary to define
some measure of the size of the perturbations. Several
measures are possible and each could give a different
optimal. The most convenient measure is the acoustic
energy per unit volume, ~E, because it is easy to calculate
and has a simple physical interpretation.68

The acoustic energy per unit volume, ~E consists of a

kinetic component,fEk and a pressure potential compo-

nent, eEp. In dimensional form it is given by

~E ¼fEk þ eEp ¼
1

2
�0 ~u2 þ

~p2

�20c
2
0

� �
: ð28Þ

Substituting for ~u and ~p from equation (18), making
use of the ideal gas relation and defining the reference
scale for energy per unit volume to be �0u

2
0, the dimen-

sionless acoustic energy per unit volume, E, is given by
Kedia et al.68

E ¼
1

2
u2 þ

1

2
p2 ¼

1

2

XN
j¼1

�2j þ
1

2

XN
j¼1

_�j
j�

� �2

¼
1

2
xHx ¼

1

2
kxk2,

ð29Þ

where k	k represents the 2-norm. The rate of change of
the acoustic energy with time is

dE

dt
¼ u

du

dt
þ p

dp

dt
¼
XN
j¼1

�j
d�j
dt
þ
XN
j¼1

_�j
j�

� �
d

dt

_�j
j�

� �
ð30Þ

¼ �
XN
j¼1


j
_�j
j�

� �2

�
XN
j¼1

2�
_�j
j�

� �

�
1

3
þ uf ðt� �Þ

���� ����12� 1

3

� �1
2

 !
sinð j�xf Þ:

ð31Þ

The first term on the right hand side of equation (31)
represents damping and is always negative. The second
term is the instantaneous value of p _Q and is the rate at
which thermal energy is transferred to acoustic energy
at the wire. It is worth noting that this transfer of
energy can be in either direction.

In general, care should be taken in adopting the
appropriate norm. A number of definitions of disturb-
ance energies are available; for a recent review, see
George and Sujith.90 Chu’s norm91 was used in
Mariappan and Sujith42 and Wieczoerk et al.,45

whereas Mariappan et al.37 used Myers’ energy.92 The
consequences of choosing an inappropriate norm are
highlighted in Wieczoerk et al.45

The linearized governing equations

Non-normality, which is central to this article, is a
linear phenomenon. It is most easily examined when
the governing equations are linearized around x ¼ 0
and expressed in the form dx=dt ¼ Lx, where x repre-
sents the state of the system and L represents the
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evolution operator or matrix. Two linearizations are
required in order to express the governing equations
in this form. The first linearization, which is valid for
uf ðt� �Þ 
 1=3, is performed on the square root term
in equations (20) and (25)

1

3
þ uf ðt� �Þ

���� ����12� 1

3

� �1
2

 !
�

ffiffiffi
3
p

2
uf ðt� �Þ: ð32Þ

This produces a system of linear DDEs:
dx=dt ¼ L1xðtÞ þ L2xðt� �Þ, where L1 is a normal
matrix and L2 is a non-normal matrix. It is possible
to find the eigenvalues of this linear DDE system and
to quantify the non-normality of L2 but, in
Balasubramanian and Sujith36 and this article, a
second linearization is performed on the time delay

uf ðt� �Þ � uf ðtÞ � �
@uf ðtÞ

@t

¼
XN
k¼1

�kðtÞ cosðk�xf Þ � �
XN
k¼1

k�
_�kðtÞ

k�

� �
cosðk�xf Þ

ð33Þ

This linearization is valid only for the Galerkin
modes for which � 
 Tj, where Tj ¼ 2=j is the period
of the jth Galerkin mode. Equations (32) and (33) are
substituted into equation (25) to give the linearized gov-
erning equations

F1G �
d

dt
�j � j�

_�j
j�

� �
¼ 0, ð34Þ

F2G �
d

dt

_�j
j�

� �
þ j��j þ 
j

_�j
j�

� �
. . .

	 	 	 þ
ffiffiffi
3
p
�sj
XN
k¼1

�kðtÞck �
ffiffiffi
3
p
��sj

XN
k¼1

k�
_�k
k�

� �
ck ¼ 0

ð35Þ

where sj � sinð j�xf Þ and ck � cosðk�xf Þ. This is a set of
linear ordinary differential equations (ODEs), which
can be expressed in the matrix form

d

dt
x ¼

d

dt

u

p

� �
¼

LTL LTR

LBL LBR

� �
u

p

� �
¼ Lx: ð36Þ

LTR and LBL contain non-zero elements along
their diagonals, which represent the isentropic part of
the acoustics (i.e., the first two terms on the RHS
of equations (36) and (37). LBR contains nonzero elem-
ents along its diagonal, which represents the damping,

j. The heat release term, �, makes every element

nonzero in LBL and LBR. Therefore these two sub-
matrices are full.

The rate of change of energy dE=dt can be found
either by substituting equations (32) and (33) into equa-
tion (31) or by evaluating xTLx. This gives

dE

dt
¼ �

XN
j¼1


j
_�j
j�

� �2

�
ffiffiffi
3
p
�
XN
j¼1

XN
k¼1

sjck
_�j
j�

� �
�k

þ
ffiffiffi
3
p
��
XN
j¼1

XN
k¼1

sjckk�
_�j
j�

� �
_�k
k�

� �
:

ð37Þ

Transient growth and triggering
in the Rijke tube

The thermoacoustic system examined in this article has
xf ¼ 0:3, c1 ¼ 0:05, c2 ¼ 0:01, � ¼ 0:02, and N¼ 10.
The time delay is slightly shorter than that found in
Heckl,22 who used � ¼ 0:08. It models a hot wire and
is therefore much shorter than it would be if modelling
a flame. We chose a short delay so that the linearization
equation (33) would be valid, even though we only use
that linearization here. A longer time delay would cause
the system to become unstable at lower � but would not
change its qualitative behavior.

Fixed points and periodic solutions

The bifurcation diagram in Figure 10 shows the min-
imum acoustic energy on each periodic solution as a
function of �. The Hopf bifurcation lies at �l¼ 0.86
and is subcritical. The fold point lies at �c¼ 0.72.
There is an unstable periodic solution at low amplitude
and a stable periodic solution at high amplitude. The
results in this article are found for � ¼ 0:75, at which
the system has a stable fixed point, an unstable periodic
solution and a stable periodic solution.

Non-normality and transient
growth around the fixed point

When the governing equations are linearized around
the fixed point, the evolution matrix equation (36) is
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Figure 10. Bifurcation diagram for the Rijke tube.
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obtained. The spectra and pseudospectra of this matrix
are shown in Figure 11. The pseudospectra are nearly
concentric circles centered on the spectra, which shows
that the degree of non-normality is small.

The maximum transient growth, G(T), can be calcu-
lated with the SVD, as described in section 3.1.1 and is
shown in Figure 12. The maximum is at Gmax¼ 1.26
and T¼ 0.2 and the corresponding initial state is
shown in Figure 13.

Three significant points can be made at this stage.
The first is that the amount of transient growth is small
because the degree of non-normality is small. The
second is that the maximum transient growth occurs
within the first period ð05T5 2Þ, which will always
be the case for a linearly stable system. The third is that,
although the first mode (u21 þ p21) has the highest initial
amplitude, the next few modes have quite high initial
amplitudes. This distribution differs considerably from
the nonlinear optimal initial state in §5.4.

The most important question, however, is whether
the transient growth from this initial state is sufficient
to cause triggering to the stable periodic solution.
Figure 14 shows the evolution of acoustic energy with
time, starting from this initial state at different initial
energies, E0. The evolution is shown for the nonlinear
governing equations (24) and (25) and the linear gov-
erning equations (34) and (35). At low E0, the evolution
is predicted well by the linear analysis but at high E0 the
nonlinear evolution has much less transient growth
than the linear evolution.

Reading from Figure 10, the lowest energy on the
unstable periodic solution is 0.125, which is a first
approximation for the initial energy, E0, required for
triggering.18 It will be shown that the lowest initial
energy that leads to triggering is E0 ¼ 0:1099. At this
value of E0, the linear optimal (Figure 13) causes very
little transient growth and, as will be confirmed later, is
very different from the types of initial states that cause
triggering. We might have anticipated this from Wicker
et al.’s results,18 who found that the initial state that
triggers (in their two mode system) has to have most of
its energy in the first mode.

Non-normality and transient growth around
the unstable periodic solution

Non-normality and transient growth are usually
considered only around fixed points. They can also be
considered around periodic solutions, however, and
this turns out to be crucial for triggering.

The 10 mode Rijke tube has 20 degrees of freedom.
The state of the system can be represented by a point in
20-dimensional space and the acoustic energy of each
point is given by its distance from the origin. This is
difficult to draw so Figure 15 shows a cartoon of this
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Figure 12. Maximum transient growth, G(T), as a function of optimization time, T, for the 10 mode Rijke tube with xf ¼ 0:3,

c1 ¼ 0:05, c2 ¼ 0:01, � ¼ 0:02, and � ¼ 0:75 for the fully-linearized system (solid line). The maximum value is Gmax ¼ 1:26 at T¼ 0.2.
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Figure 11. Spectra (black dots) and pseudospectra (contours)

for linear perturbations about the fixed point.
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space in three dimensions. The grey potato-shaped sur-
face is the closed manifold that separates the states that
evolve to the stable fixed point, which lies inside the
surface, from the states that evolve to the stable peri-
odic solution, which is the large loop that lies away
from the surface. Points exactly on the manifold
remain on the manifold for all time. In order for a
state to reach the stable periodic solution, it must
start outside this closed manifold.

The unstable periodic solution is a loop exactly on
this manifold. Any state on this loop, if given an infini-
tesimal increase in energy, would evolve to the stable
periodic solution. This is why the lowest energy point
on this loop is a first approximation to the energy
required for triggering. We will call this point n and
define the unit vector from the origin to this point as
n̂. The important question is whether there are states

with even lower energy that lie outside this closed mani-
fold. In other words, what is the shape of the potato
around the unstable periodic solution?

Let us consider small perturbations around the
unstable periodic solution. We do this by generating
the monodromy matrix32 which maps the evolution of
an infinitesimal perturbation after one loop around the
periodic solution. Its eigenvalues and pseudospectra are
shown in Figure 16. The pseudospectra are nearly (but
not quite) circles centered on the spectra. Therefore, the
system is slightly non-normal. There are eighteen eigen-
values inside the unit circle, which are stable, one eigen-
value on the unit circle, which is neutrally stable
and represents motion in the direction of the periodic
solution, and one eigenvalue outside the unit circle,
which is unstable. This shows that the unstable mani-
fold attracts states from every direction except one.
Furthermore, because this system has no other fixed,
periodic, or chaotic solutions, every state exactly on the
manifold, as well as remaining on the manifold, must
be attracted toward the unstable periodic solution.

At the point with minimum energy on the unstable
periodic solution, the neutral eigenvector is perpendicu-
lar to the radial direction, n̂, If the monodromy matrix is
normal and if the unstable eigenvector points in direc-
tion n̂, then all the stable eigenvectors must also be per-
pendicular to the radial direction there. This means that
the point with minimum energy on the unstable periodic
solution is a local energy minimum on the manifold.

If the monodromy matrix is non-normal, however,
then the stable eigenvectors are nonorthogonal.
Whichever direction the unstable eigenvector points
in, the stable eigenvectors are unlikely to point perpen-
dicular to the radial direction, n̂. This means that the
point with minimum energy on the unstable periodic
solution is not a local energy minimum on the mani-
fold. It is easy to check this numerically for specific
cases by taking the dot product of the stable
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Figure 14. The acoustic energy growth with time, starting from the linear optimal initial state. The linear evolution is shown as a

dashed line. The nonlinear evolution is shown as solid lines for initial acoustic energies of 10�3,10�2,10�1,1,10. For small initial

energies, the nonlinear and linear evolutions are almost identical and transient growth can be seen at small times. For large initial
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Figure 15. A cartoon of the manifold that separates the states

that evolve to the stable fixed point from those that evolve to the

stable periodic solution.

Figure reproduced from [33], with permission.
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eigenvectors with the radial direction n̂. The technique
described in the next section and Juniper33 can then be
used to iterate to the local energy minimum. It uses a
local optimization routine and starts from the lowest
energy point on the unstable periodic solution.

Although this is enough motivation for the analysis
in the next section, we may wish to use this linear tech-
nique to estimate the optimum initial state very crudely.

Firstly, let us consider states that remain exactly
on the manifold. In the long time limit, all of these
states are attracted to the unstable periodic solution.
If the monodromy matrix is non-normal, however,
some states initially grow away from the unstable peri-
odic solution, some to higher energies, before
being attracted back. These states are the projection
of the first singular vector of the monodromy matrix,
s, onto the manifold around the unstable periodic solu-
tion. This direction is ðs� s 	 n̂Þ. It is also easy to check
this numerically.

Secondly, if we make the reasonable assumption
that trajectories are locally parallel, then the states
that start from lower energy than the unstable periodic
solution but grow transiently and are then attracted
toward it will look similar to those described above.
To a first approximation, therefore, the optimal initial
state is given by nþ kðs� s 	 n̂Þ, where k is an unknown
small value.

It is shown in Juniper33 that n has most energy in the
first mode and that s has most energy in the first mode
and appreciable energy in the third and fourth modes.
We would expect, therefore, that the optimal initial
state will have most energy in the first mode and
some in the third and fourth, but not as much in the
second mode. This is what is found in the next section.

Nonlinear optimal initial states and triggering

Our analysis of non-normality and transient growth
around the fixed point calculated the perturbations
that maximize transient growth around the unstable
periodic solution and shows that some initial states
that trigger can have lower energy than the unstable
periodic solution. It gives an indication of the direction
of these points away from the unstable periodic solu-
tion but cannot give the optimal initial state itself. For
that, nonlinear optimization is required.

In the linear analysis, the energy growth, G, is a
function only of the optimization time, T. In the non-
linear analysis, it is also a function of the state’s initial
amplitude, which can be quantified by the initial acous-
tic energy, E0. Therefore, Gmax needs to be found by
optimizing G over all T and all E0.

These nonlinear optimal initial states are found with
a constrained optimization technique33 adapted from
optimal control.93 A cost functional, J , is defined,
which can be kxðTÞk2=kx0k

2. A Lagrangian functional,
L, is then defined as the cost functional, J , minus a set
of inner products. These inner products multiply the
governing equations by one set of Lagrange multipliers
and the initial state by another set of Lagrange multi-
pliers. When all variations of L with respect to the
Lagrange multipliers, state variables, x, and initial
state, x0, are zero then an initial state has been found
that optimizes J and satisfies the governing equations.

To find this initial state, the direct governing equa-
tions are integrated forward for time T from an initial
guess, thus satisfying the requirement that all variations
of L with respect to the Lagrange multipliers are zero.
The Lagrangian functional is then re-arranged so that it
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Figure 16. (a) Eigenvalues and (b) pseudospectra of the monodromy matrix around the unstable periodic solution.
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is expressed in terms of a different set of inner products.
These inner products multiply the state variables, x, by a
first set of constraints. They also multiply the initial state,
x0, by a second set of constraints. The requirement that
all variations of L with respect to x are zero can be met
by satisfying the first constraints. Half of these, known as
the optimality conditions, determine the relationship
between an adjoint state vector, xþ, and the direct state
vector, x, at time T. The other half, known as the adjoint
governing equations, govern the evolution of xþ for
t ¼ ½0,T�. After setting the optimality conditions at
t¼T, the adjoint governing equations are integrated
backward to time 0, thus satisfying the requirement
that all variations of L with respect to x are zero. The
second set of constraints return the gradient information
@L=@x0 at the initial guess for x0. This is combined with a
convenient optimization algorithm, such as the steepest
descent method or the conjugate gradient method, in
order to converge toward the optimal initial state, at
which @L=@x0 ¼ 0. This finds local optima. This process
is repeated starting from several hundred random start-
ing states in order to find a global optimum.

Figure 17 shows contours of GðT,E0Þ. For details,
please refer Juniper.33 Two regions of high transient
growth can be seen. The first is centered on
ðE0,TÞ ¼ ð0:050, 0:25Þ, withGmax¼ 1.48, and is a continu-
ation of the linear optimal into the non-linear regime. The
second is found at high values of T and corresponds to

initial states that reach the stable limit cycle from the lowest
possible energies. These are the triggering states that we
seek. The lowest energy state that triggers has E0¼ 1.099
and it is not a continuation of the linear optimal.

Figure 18 shows a slice through Figure 17 at
E0 ¼ 0:1099 and Figure 19 shows the corresponding ini-
tial states at optimization times T¼ 0.1, T¼ 1.0, and
T¼ 10. Figure 20 shows the evolution from these three
initial states on two timescales: (a) 0 � t � 10 (b)
0 � t � 100. The first state (T¼ 0.1), which we show
because its optimization time is similar to the linear opti-
mal time, has strong initial transient growth but then very
quickly decays back to the fixed point. The second state
(T¼ 1), which is in region 1 of Figure 17, has strong
growth over the first cycle and is almost attracted
toward the unstable periodic solution but then also
decays back to the fixed point. The third state (T¼ 10),
which is in region 2 of Figure 17, has less growth over the
first cycle but is then attracted toward the unstable peri-
odic solution and, although not shown here, is then
attracted to the stable periodic solution. This state has
most of its energy in the first mode, as anticipated from
Wicker et al.,18 so that it can start reasonably close to the
unstable periodic solution. It has significant energy in the
third and fourth modes, as suggested by the linear ana-
lysis around the unstable periodic solution.

Jagadesan and Sujith31 showed experimentally that
during triggering, the system evolves transiently toward

Figure 17. Transient growth, GðT,E0Þ, as a function of optimization time, T and initial energy, E0, for perturbations around the fixed

point of the Rijke tube.
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an unstable periodic orbit, before growing to limit-
cycle, in a manner analogous to this bypass scenario
originally proposed by Juniper.33

Non-normality and transient growth
in complex systems

Having discussed a toy model for Rijke tube in great
detail, more complex models for the Rijke tube and

other thermoacoustic systems can be constructed.
We will now briefly review the studies on systems that
are more complex.

Ducted premixed flame

Stringent emission requirements drive operating con-
ditions of premixed gas turbines and combustors to
the lean regime. However, lean premixed combustion
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Figure 20. Energy, E, as a function of time, t, for the three initial states in Figure 19. The optimal initial state with T¼ 10 has smaller

transient growth at short times but then grows to the stable limit cycle (not shown).

Figure 19. Initial states that give maximum transient growth at E0 ¼ 0:1099 for T¼ 0.1, T¼ 1.0, and T¼ 10. The optimal initial state

with T¼ 10 has most energy in the first mode and appreciable energy in the third and fourth modes.

Figure 18. Slice through Figure 17 at E0 ¼ 0:1099.
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has been shown to be particularly susceptible to com-
bustion instability.94,95 Subramanian and Sujith39

investigated the role of non-normality and nonlinearity
in flame-acoustic interaction in a ducted premixed
flame.

The premixed flame thermoacoustic system is mod-
eled by considering the acoustic momentum and energy
equations together with the equation for the evolution
of the flame front obtained from the kinematic G-equa-
tion.96 The G-equation is rewritten as the front-track-
ing equation as given in equation (39) for an axi-
symmetric wedge flame in a purely axial flow45 shown
in Figure 21. The scales used for nondimensionalization
are derived from the length of the flame b sin  and the
velocity of the flow �u as shown below in equation (38).

X ¼ ~X sin=b; �u ¼ ~�u=~�u ¼ 1; t ¼ ~t=ðb= �u sin Þ ð38Þ

@�0

@t
¼ ð1þ u0Þ cos 

@�0

@X

� �
� ð1þ u0Þ sin �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

@�0

@X

� �2
s

ð39Þ

The configuration of a duct which is open at both
ends with the axi-symmetric wedge flame stabilized at
an axial location within it is considered, see Figure 22.

The linear operator of a generic thermoacoustic
system has been shown to be non-normal.35,36 The lin-
earized operator for the premixed flame thermoacoustic
system is also found to be non-normal leading to non-
orthogonality of its eigenvectors.39 Nonorthogonal
eigenvectors can cause transient growth in evolutions
even when all the eigenvectors are decaying for a line-
arly stable case. Therefore, classical linear stability
theory cannot predict the finite time transient growth
observed in non-normal systems. A parametric study
of the variation in transient growth due to change in
parameters such as flame location and flame angle is
performed. It is found that the transient growth is pro-
nounced when the flame has a small angle of flame and
is located close to the center of the duct. The optimum
initial condition which causes maximum transient
growth can be identified using SVD for a given
system configuration. In addition to projections along
the acoustic variables of velocity and pressure, the opti-
mal initial condition for the self evolving system has
significant projections along the variables for heat
release rate.

Nonlinear simulations show subcritical transition
to instability from a small but finite amplitude perturb-
ation to the system as shown in Figure 23. The system is
perturbed with the optimal initial perturbation with ini-
tial acoustic velocity of small but finite amplitude at the
flame location. It shows that the linear and nonlinear
evolutions diverge within a short period of time.
Asymptotically, the linear evolution decays as shown
in Figure 23(a) while the nonlinear evolution reaches
a self sustained oscillation of amplitude as seen in the
inset from Figure 23(b). Therefore, an initial condition

Figure 22. Geometry of coupled system with an axi-symmetric wedge flame stabilized on a wire. Here, L is the length of the duct,

ðb=aÞ is the ratio of burner to duct radius and ~yf is the flame location along the length of the duct. Figure reproduced with permission

from Subramanian and Sujith.39

Figure 21. Geometry of an axi-symmetric wedge flame stabi-

lized on a wire. Here �0 is the displacement of instantaneous

flame shape from the unperturbed flame shape along X,  is the

flame angle, SL is the laminar flame speed, b is the radius of the

burner, and �u is the mean flow. Figure reproduced with permis-

sion from Subramanian and Sujith.39
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with very small initial amplitude, if applied in the opti-
mal manner, can cause transient growth in the energy
of the system.

The premixed flame thermoacoustic system has more
degrees of freedom than the number of acoustic modes.
These additional degrees of freedom represent the inter-
nal degrees of freedom of the flame front or the internal
flame dynamics. These internal degrees of the flame
front must be preserved in the thermoacoustic model
to accurately capture the non-normal effects. In ther-
moacoustic systems, subcritical transition to instability
has been thought of as being caused by a large ampli-
tude initial perturbation to a linearly stable system. In a
linearly stable case, even a small but finite amplitude
optimal initial perturbation is shown to reach a limit
cycle. The optimum initial condition may have contri-
butions from variables that represent the flame front
dynamics, and will not be purely acoustic. Therefore
in non-normal systems, initial perturbations with amp-
litudes that are small when compared with the limit
cycle oscillations can cause subcritical transition to
instability.

Ducted diffusion flame

The role of non-normality and nonlinearity in flame-
acoustic interaction in a ducted diffusion flame has been
investigated by Balasubramanian and Sujith.35 They
used the infinite rate chemistry model to study unsteady
diffusion flames in a Burke–Schumann type geometry.
The combustion response to perturbations of velocity is
non-normal and nonlinear. This flame model is then
coupled with a linear model of the duct acoustic field
to study the temporal evolution of acoustic perturb-
ations. The one-dimensional acoustic field is simulated
in the time domain using the Galerkin technique, treat-
ing the fluctuating heat release from the combustion
zone as a compact acoustic source. The coupled com-
bustion-acoustic system is non-normal and nonlinear.

Solid rocket motor

SRMs are often prone to combustion instability. The
prediction of combustion instability in the early design
stage is a formidable task due to the complex unsteady

Figure 23. Evolution of acoustic velocity at the flame for (a) linearised system and (b) nonlinear system. Evolution of the energy due

to fluctuations EðtÞ=Eð0Þ for (c) linearised system and (d) nonlinear system. All evolutions are plotted along the acoustic time scale t.

The optimal initial condition with u0f ð0Þ ¼ 7:8� 10�5 and Eð0Þ ¼ 4� 10�6 is seen to grow transiently and decay in the linear

evolution. The nonlinear evolution reaches a limit cycle of amplitude ju0f jLC ¼ 0:67. The other system parameters are

 ¼ 10�, yf ¼ 0:2, � ¼ 0:8, c1 ¼ 2� 10�3, c2 ¼ 2� 10�4, SL ¼ 0:2782 m=s and �qR ¼ 2:2263� 106 J=Kg. Figure reproduced with

permission from Subramanian and Sujith.39
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flow field existing in the combustion chamber. Combustion
instability occurs when the unsteady burn rate from the
propellant (in SRMs) is amplified by the positive feed back
of the acoustic oscillations in the chamber. Combustion
instability causes excessive pressure oscillations, which
might resonate with the structural modes of the rocket,
leading to excessive vibration and damage of the payload.
Further, during the occurrence of combustion instability,
the heat transfer to the combustion chamber walls is
increased, eventually melting them.2 Instabilities in SRMs
have been known to exist since 1930.2 Since then, many
investigations were conducted to understand the mechan-
isms behind them and arrive at measures to control them.

Mariappan and Sujith42 investigated the role of non-
normality in the occurrence of triggering instability in
SRMs with homogeneous propellant grain. Their theor-
etical analysis starts with linearizing the governing equa-
tions and analyzing their stability. This leads to finding
the eigenvalues (complex frequency) and eigenmodes of
the system. In classical linear stability analysis, a system
is said to be linearly stable if the oscillations decay to
zero in the asymptotic time limit, reaching finally the
steady state (stable fixed point). The system is linearly
unstable if the oscillations grow exponentially. Both the
definitions are for small disturbances with respect to the
corresponding mean quantities. Non-normal systems
show initial transient growth for suitable initial perturb-
ations even when the system is stable according to clas-
sical linear stability theory. Transient growth plays an
important role in the subcritical transition to instability
regime.42 In SRM the above is termed as pulsed instabil-
ity, where the system is linearly (small amplitude) stable,
but nonlinearly (large amplitude) unstable.

Mariappan and Sujith42 showed that pulsed instabil-
ities can occur in two ways: (1) by introducing a large
pulse into the system where nonlinearities are import-
ant, leading to a limit cycle; (2) through a small, but not
infinitesimal, initial condition in the appropriate direc-
tion that causes transient growth. As the amplitude of
the oscillation increases, nonlinear terms can then con-
tribute, leading to a limit cycle.

Experimental efforts

The ideas of non-normality and transient growth have
been pursued by the fluid dynamics community for
nearly two decades, resulting in a large body of theor-
etical and numerical studies in the literature. However,
there are just a handful of experimental efforts. The
lack of experimental studies, in the authors’ opinion,
is due to the inherent difficulty in extracting the relevant
details (e.g., the growth factor) from experiments.

Mariappan et al.44 confirmed experimentally that
the eigenmodes of a horizontal Rijke tube are non-
orthogonal. Further, they quantified transient growth

using acoustic energy as a scalar norm, and confirmed
the predictions of Balasubramanian and Sujith36 and
Juniper.33 Kim and Hochgreb47 experimentally investi-
gated triggering and transient growth of thermoacous-
tic oscillations in a model lean-premixed gas turbine
combustor. Zhao46,97 investigated transient growth of
flow disturbances in triggering combustion instability in
a Rijke tube that is driven by a premixed flame.

Characterizing bifurcations
in thermoacoustic systems

We have seen the role played by non-normality and
transient growth in the evolution of a thermoacoustic
system. The final state to which the system evolved
depends on the nonlinear characteristics of the system.

The nonlinear dynamical behavior of a thermoa-
coustic system is best characterized by a bifurcation
diagram. The bifurcation diagram can be obtained the-
oretically, numerically and experimentally.

Method of multiple scales

Analytical methods of bifurcation analysis are particu-
larly advantageous as they help to (1) identify unifying
common features across varied systems and to (2) derive
reduced order models that preserve the nonlinear dynam-
ical behavior of the system. Classical linear stability ana-
lysis is employed to determine the onset of instabilities in
thermoacoustic systems. A weakly nonlinear analysis near
the onset of linear instability through a Hopf point can be
performed using the method of multiple scales. This
method helps to extend the results of linear analysis in
determining the criticality of the Hopf bifurcation by
characterizing the branch of periodic solutions that
emerge from the Hopf point. Subramanian et al.98 applied
the method of multiple scales to study subcritical bifurca-
tions and bistability in thermoacoustic systems.

The method of multiple scales consists of introdu-
cing different scales to formally separate the fast and
slow scales.99 The dynamics of a general thermoacous-
tic system is analyzed close to the critical Hopf point
that occurs at a parameter value of � ¼ �H. The fast
timescale (reciprocal of the frequency) and the location
of the Hopf point can be obtained from linear stability
analysis. The evolution equation of the system close to
this critical point can then be completely described in
terms of a complex amplitude W that varies only in the
slow time scale t. The evolution of W in the slow time
scale is in the form of a Stuart–Landau equation100

given by

dW

dt
¼ ðB1 þ iB3Þð� � �HÞWþ ðB2 þ iB4ÞjWj

2W ð40Þ
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Expanding W ¼ Aei� in the above equation, the
amplitude and phase equations for the evolution of
the system can be obtained as

dA

dt
¼ B1 �ð ÞAþ B2 A

3 , ð41Þ

d�

dt
¼ B3 �þ B4 A

2: ð42Þ

In the above relations, determining the fixed point of
the slow flow amplitude equation (41) gives the ampli-
tude of the periodic state and the stability analysis of the
fixed point helps in determining the criticality of the
Hopf bifurcation. However, the estimates obtained
using this method become less accurate as we move
away from the Hopf point as the assumption of weak
nonlinearity becomes invalid. Other analytical methods
such as harmonic balance or energy balance method101

must then be employed to estimate the dynamical behav-
ior of the system far from the Hopf point. Alternatively,
numerical methods of continuation can be used to
obtain the complete bifurcation plots of systems using
a single technique as detailed in the next subsection.

Numerical continuation

The nonlinear dynamical behavior of a thermoacoustic
system is best characterized by a bifurcation diagram.
Numerical continuation is used to compute the numer-
ical solutions to a set of parameterized nonlinear equa-
tions where other approaches to solve the problem are
prohibitively expensive. The limit cycles found by con-
tinuation methods are exact, because the methods oper-
ate in the time domain. Frequency domain methods,
such as the flame describing function (FDF), can only
estimate limit cycles. More importantly, however, con-
tinuation analysis can be used as a tool to gain insight
into the qualitative properties of the solutions. It is used
to calculate the bifurcations or qualitative changes in
the solution for the variation of one or more param-
eters of the system. Solutions which are connected to a
given state of the system are computed. Bifurcations are
identified by including multiple test functions which
change sign at the critical value of the parameter.

This method has the advantage that once a station-
ary or periodic solution has been computed, the
dependence of the solution on the variation of a par-
ameter is obtained very efficiently. It can also be used to
compute unstable limit cycles. Presently, this technique
has been applied to thermoacoustic systems such as a
nonlinear Rijke tube model102 and to the ducted pre-
mixed flame model.103

Using iterative techniques,54 continuation methods
have now been applied to a Burke–Schumann flame

in an acoustic duct with a few hundred degrees of free-
dom53 and to a G-equation flame in an acoustic duct
with a few thousand degrees of freedom.104 By examin-
ing the Floquet multipliers of the periodic solutions that
are found, this reveals stable periodic solutions, unstable
periodic solutions, stable and unstable period-2 periodic
solutions, Hopf bifurcations, Neimark–Sacker bifurca-
tions, fold bifurcations, and period-doubling bifurca-
tions. This qualitatively shows the same rich nonlinear
behavior seen in experiments.8 Continuation methods
can find unstable solutions as easily as they can find
stable solutions. In regions of multistability, these
unstable solutions have been shown to be critical for
mode switching.30,31 Furthermore, the corresponding
Floquet modes show which coupled behavior is respon-
sible for causing each bifurcation.

Conclusions

A thermoacoustic system is non-normal, and hence the
eigenvectors are nonorthogonal. Non-normality leads
to short time amplification, even though the individual
modes decay exponentially. In a thermoacoustic
system, states that have low energy can initially exploit
non-normal linear transient growth around the
unstable periodic solution before growing from there
to the stable periodic solution due to nonlinear effects.
This can explain the triggering caused by small-ampli-
tude disturbances, or the order of background noise
level.3 The current methodology to study the onset of
thermoacoustic oscillations involves looking for expo-
nentially growing or decaying modes by calculating the
individual eigenvalues of the linearized system. More
sophisticated approaches have to be adoped and more
involved methods have to be introduced, to accurately
capture the transient behavior which is critical for the
overall system stability. We wish to emphasize that
thermoacoustic systems are indeed nonlinear dynamical
systems and should be analyzed with tools from that
field that are well developed.

Presently, thermoacoustic instability is associated
synonymously with limit cycle oscillations.3 However,
recent results indicate that the dynamics of thermoa-
coustic oscillations are not limited to limit cycle oscil-
lations. The limit cycle state obtained at the onset of
instability can undergo further bifurcations leading to a
variety of complex nonlinear states. The quasi-periodic
route to chaos7 and the frequency-locking route to
chaos8 have been recently established in thermoacous-
tics. Further Kabiraj et al.9,105 has also identified type-
II intermittancy in thermoacoustic instabilities. Models
of thermoacoustics of ducted premixed flames also
capture this phenomena.103,106 In combustors with tur-
bulent flow, Nair et al.107 showed recently that the
onset of combustion-driven oscillations is always
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presaged by intermittent bursts of high amplitude peri-
odic oscillations that appear in a near-random fashion
amidst regions of aperiodic low-amplitude fluctuations.
Further, Nair and Sujith108 showed that in a turbulent
combustor the low-amplitude, irregular pressure fluctu-
ations acquired during stable regimes, termed combus-
tion noise, display scale invariance and have a
multifractal signature that disappears at the onset of
combustion instability. Thus it appears as if the subject
of nonlinear thermoacoustics is headed for exiting
developments.
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