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A recent theory [Tirumkudulu & Paramati, “Stability of a moving radial liquid sheet:
Time dependent equations.”, Phys. of Fluids, 102107, 25, 2013] for a radially expanding
liquid sheet that accounts for liquid inertia, interfacial tension and thinning of the liquid
sheet while ignoring inertia of surrounding gas and viscous effects shows that such a sheet
is convectively unstable at all frequencies and Weber numbers (We ≡ ρlU2h/σ) to small
sinuous disturbances. Here, ρl and σ are the density and surface tension of the liquid,
respectively, U is the speed of the liquid jet, and h is the local sheet thickness. In this
study, we use a simple non-contact optical technique based on laser induced fluorescence
to measure the instantaneous local sheet thickness and its displacement of a circular sheet
produced by head on impingement of two laminar jets. When the impingement point is
disturbed via acoustic forcing, sinuous waves produced close to the impingement point
travel radially outward. The phase speed of the sinuous wave decreases while the ampli-
tude grows as they propagate radially outwards. Our experimental technique was unable
to detect thickness variations in the presence of forcing suggesting that the variations
could be smaller than the resolution of our experimental technique. The measured phase
speed of the sinuous wave envelope matches with predictions while there is a qualitative
agreement in case of spatial growth. We show that there is a range of frequencies over
which the sheet is unstable due to both aerodynamic interaction and thinning effects
while outside this range, thinning effects dominate. These results imply that a full the-
ory that describes the dynamics of a radially expanding liquid sheet should account for
both effects.
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1. Introduction

The process by which bulk liquid is converted into fine droplets using external forces is
known as atomization. Atomization plays an important role in many industrial processes
such as combustion of liquid fuels in rocket engines, spray painting, encapsulation of
biomedical materials, powder metallurgy, removal of toxic materials, and in many other
chemical processes(Dombrowski et al. 1960; Weihs 1978). Since the goal of any atomiza-
tion process is to obtain a desired drop size distribution, it is important to understand
the physical processes involved in the break-up of the liquid. In many spray nozzles, the
liquid is forced through an orifice leading to the formation of liquid jets that break-up
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into droplets. In others, a liquid sheet forms first which subsequently breaks up into
ligaments and drops. In all these cases, linear instability theories are used to predict the
wavelength of the most unstable disturbance wave which in turn provides an estimate of
the drop size distribution. The instability theories also form the basis of sophisticated
atomization models in spray systems to predict the drop size distribution(Ashgriz 2011).
Consequently, it is important to understand the physics of break-up process in not only
predicting the drop size distribution, but to also in design of nozzles for obtaining a
desired distribution.

Impinging jet injectors, which is the focus of this study, are the most common con-
figuration for atomization in high density combustors due to their relative simplicity of
fabrication, atomization and mixing characteristics(Shen et al. 1997). Much of the early
work on the stability of the radial liquid sheet(Huang 1970; Weihs 1978) formed by im-
pingement of liquid jets was an extension of the classical temporal instability analysis of
Squire (1953) who studied the instability of a thin inviscid planar liquid sheet of con-
stant thickness moving in a quiescent ambient gas medium. The constant sheet thickness
analysis shows that the sheet is unstable to sinuous waves only when the Weber number

calculated with respect to the local thickness (h), We ≡ ρlU
2h
σ > 2 and ρa

ρl
6= 0, where ρl

and ρa are densities of the liquid and the gas phase respectively, σ is the surface tension
of the liquid, and U is the speed of the liquid. The theory does not predict instabil-
ity in the absence of the gas phase. On the experimental side, Huang (1970) performed
experiments at ambient conditions with radially expanding liquid sheets produced by
head-on impingement of two equal laminar jets. Assuming no energy losses at the point
of impingement so that the fluid speed into the stagnation point is equal to that exiting
the stagnation point leads, via a simple mass balance, to the following axisymmetric
thickness variation,

h =
d2

4r
. (1.1)

Here, d is the diameter of the laminar jet and r is the radial distance. For low jet
speeds corresponding to Wed ≡ ρlU

2d/σ < 500, where the Weber number is calculated
with respect to the jet diameter, the surface of the sheet is smooth in the absence of
external disturbances and the sheet radius increases linearly with Wed with a near perfect
circular edge. For 500 < Wed < 800, there is a small deviation from the linear relation.
Small disturbances generated at the point of impingement generate capillary waves that
propagate radially outward and converge at the periphery resulting in a cusp-shaped
edge of the liquid sheet. Overall, the sheet is considered to be smooth for Wed < 800 and
this regime is referred to as the smooth regime. For very high jet speeds corresponding
to Wed > 2000, the sheet becomes unstable to Kelvin-Helmholtz (KH) instability(Squire
1953) caused by the aerodynamic interaction of the liquid sheet with surrounding air and
this regime is referred to as the flapping regime. In this regime, the sheet diameter reduces
with increase in Wed with We > 2 at the edge of the sheet. A steady transition to the
flapping regime is observed between 800 < Wed < 2000 and hence this range corresponds
to the transition regime. The presence of the three regimes were confirmed by Villermaux
& Clanet (2002) for the case of circular sheet produced by a single laminar jet impinging
an impactor. It was shown that the transition from the smooth to the flapping regime is
dependent on the ratio of the density of the surrounding gas to the liquid density,√

ρa
ρl
Wed,c ≈ 40,
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where Wed,c is the critical Weber number beyond which the flapping regime starts to set
in. For the case of water sheets formed in air at atmospheric pressure, Wed,c ≈ 1100.

On the theoretical side, Lin & Jiang (2003) considered the spatio-temporal stability
of the radially expanding liquid sheet and have shown the sheet to be stable to both
sinuous and varicose disturbances in the absence of the gas phase. The stability of the
radial liquid sheets was investigated experimentally by Bremond et al. (2007) who used
a laminar jet that impinged on a vibrating impact cylinder (impactor) to produce wavy
(sinuous) radial liquid sheets at low to moderately high jet speeds so that the flow ranged
from smooth to the transition regime (Wed ∼ 250−1000). The measured envelope of the
sinuous wave for the Wed = 990 agreed with the predictions of classical linear stability
results determined from the Squire analysis when the predicted growth rates were reduced
by a factor of half. Thus it appears that the results based on the classical stability analysis
of Squire for large Wed and therefore for the transition/flapping regime agrees well with
the measurements for radial sheets suggesting that for the regimes tested, the principal
source of instability is the aerodynamic force arising from the interaction of the liquid
sheet with the surrounding gas medium. However, despite the result of Taylor (1959)
who showed that a steady sinuous disturbance introduced at the point of impingement
of a radially expanding sheet increases along the radial direction in absence of gas phase
and diverges at sheet edge, none of the above studies have investigated the influence of
the thinning of the liquid sheet on the overall stability of the sheet.

In a previous paper(Tirumkudulu & Paramati 2013), it was shown theoretically that
a radially expanding liquid sheet produced by two laminar liquid jets impinging head-on
is unstable to sinuous disturbances at all forcing frequencies in absence of surrounding
gas phase. The stability of expanding liquid sheet as a function of a characteristic Weber
number, WeH ≡ ρlU

2H/σ, was obtained from the inviscid flow equations that govern
the time-dependent evolution of the two liquid interfaces while ignoring the inertia of
the surrounding gas phase. Here, H is the characteristic thickness of the liquid sheet at
a characteristic radial distance of L, and the two are related by, H = d2/4L for a liquid
sheet produced by head-on impingement of two laminar jets(1.1). (To avoid confusion
with symbols used for the radial extent of liquid sheet, we replace the symbol R used
in the previous paper for characteristic radial distance with L). The analysis yielded
stability equations for sinuous and varicose modes that are decoupled at the lowest order
of approximation(Tirumkudulu & Paramati 2013),

∂F̄−
∂t̄

+
∂F̄−
∂r̄

= 0 , and (1.2)
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Here, F̄− and F̄+, are the dimensionless perturbed film thickness (varicose mode) and
position of the centerline (sinuous modes), both rendered dimensionless with H, r̄ is
the dimensionless radial coordinate which has been rendered dimensionless with L, and
t̄ ≡ tU/L is the dimensionless time. We seek solutions of the form,

F̄+ = S(r̄)eiω̄t̄

F̄− = Q(r̄)eiω̄t̄

where ω̄ ≡ ωL/U is the dimensionless frequency. The varicose mode is a neutrally
stable traveling wave, while the sinuous mode is governed by the following equation
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(Tirumkudulu & Paramati 2013),(
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A small sinuous displacement introduced near the point of impingement (S|r̄=1 = S0 �
1) grows as it is convected downstream suggesting that the sheet is unstable at all WeH
in the absence of the gas phase. Two different wave trains differing in wave speeds are
generated at the point of impingement that propagate radially outward. The phase ve-
locity of one train decreases with radius while that of the other increases. It was shown
that at r̄ = WeH/2, which corresponds to We = 2, the phase speed of the slower wave
train decreases to zero while the overall amplitude of the sinuous disturbance diverges
thereby setting the extent of the sheet. These results thus extend the earlier result of
Taylor (1959) who showed that a steady disturbance (zero frequency) introduced at the
point of impingement will grow and diverge at the sheet edge.

The objective of this work is to test the predictions of the aforementioned theory
(Tirumkudulu & Paramati 2013) that accounts for the thinning effects by measuring the
evolution of sinuous and varicose waves at varying forcing frequencies and for Wed =
540 and 990, pertaining to the smooth and transition regimes, respectively, where the
influence of the surrounding gas phase is either negligible or is not dominant at all radial
locations of the radial sheet. It will be shown that the predictions of the theory captures
the main aspects of the sinuous wave growth far from the impingement point without
the need of any fitting/adjustable parameters. It is further shown that irrespective of the
value of Wed, there is always a range of forcing frequency outside which the thinning
effects will dominate over aerodynamic interactions at all radial locations of the liquid
sheet. We also compare the predictions of the theory with the experiments reported by
Bremond et al. (2007) for Wed = 850 and 990, again pertaining to the transition regime,
and found similar agreement. These results indicate that all previous theories(Huang
1970; Weihs 1978; Villermaux & Clanet 2002; Lin & Jiang 2003; Bremond et al. 2007)
dealing with the radially expanding liquid sheets have missed an important aspect of the
problem, namely, a thinning sheet is inherently unstable to sinuous waves and does not
necessarily require interaction with the surrounding gas medium to make it unstable.
Since the final droplet size distribution is influenced by wavelength of the most unstable
mode, it is important to account the effect of both aerodynamic interactions and thinning
to predict correctly the final drop size distribution.

To test the predictions, experimental determination of the varicose and the sinuous
mode of the disturbance necessitates measurement of both the instantaneous local sheet
thickness and the displacement of liquid sheet at varying frequencies. While past in-
vestigations have measured the sheet thickness in the absence of forcing and sheet dis-
placements in the presence of the forcing, very few have attempted to measure both
simultaneously. This is because reliable measurement of sheet thickness is a difficult task
owing to its small thickness. The reported measurement techniques of sheet thickness
can be broadly categorized into two groups, namely, contact and non-contact methods.
Among the contact methods, Taylor (1959) was the first to measure the sheet thickness
by inserting a flow measuring device to measure the volume of a liquid passing through
a small section of the sheet. The flow measuring device is made up of a narrow slit at-
tached to a tapering box. The thickness of the liquid sheet at a particular location was
then determined from the measured output and the known slit dimensions, assuming
the velocity of the sheet is constant and equal to the jet velocity. While this is a sim-
ple method, the insertion of the flow measuring device disturbs the sheet. An alternate
technique among the contact methods is the conductivity technique(Brown et al. 1978).



Stability of a moving radial liquid sheet: Experiments 5

This method uses two parallel conducting wires that are in contact with water, and the
amount of current that flows between them is proportional to the local thickness of the
liquid sheet. The drawbacks of this method are that it can be applied only for conducting
liquids and contact with the liquid sheet disturbs the flow.

The non-contact methods are mainly optical in nature involving interference and/or
fluorescence. Among these, the interference technique is the most commonly used for
measurement of thickness variation in a liquid sheet(Villermaux & Clanet 2002; Dom-
browski et al. 1960; Matsumoto & Takashima 1971; Bremond et al. 2007; Choo & Kang
2001) including soap films(Liang & Chan 1997). Here, interference fringes represent con-
tours of constant thickness so that the profiles of the film thickness can be constructed
when distance between fringes are accurately known. This requires that the distance
between the fringes and the angle of incidence of the laser beam with respect to the
liquid sheet are accurately known. However, in regions where the film thickness varies
rapidly, such as close to the impingement point, the fringes are closely spaced and can
be difficult to resolve. Further, this technique is difficult to apply due to changing angle
of incidence when the liquid sheet oscillates such as in the flapping regime or when the
sheet is exposed to external pressure fluctuations. To overcome these constraints, Waki-
moto & Azuma (2004) captured the cross section of a liquid sheet using a laser induced
fluorescence technique by passing a laser sheet at an acute angle to the plane of the liquid
sheet which contained a fluorescent dye. The camera was placed at an acute angle to the
liquid sheet on the opposite side so that the cross-section of the liquid sheet could be
imaged. A calibration was performed so that the distance between the upper and the
lower boundaries of the fluorescent image yielded the true film thickness. A different ap-
proach to extracting thickness information using laser induced fluorescence method has
been applied to liquid films flowing over a solid substrate or confined between transparent
solid substrates(Alekseenko et al. 2009). Here, a non-linear Beer-Lambert law relating
the incident light intensity, emission light intensity, film thickness, fluorescent dye con-
centration and extinction coefficient was used to determine the local variations in the film
thickness. A more advanced technique proposed by Hidrovo & Douglas (2001) employs
a dual emission laser induced fluorescence technique for the measurement of liquid film
thickness where, the fluid contains two dyes such that the emission spectrum of one dye
overlaps the absorption spectrum of another dye. The ratio of the emission intensity of
the two dyes obtained from the Beer-Lambert law for the case of very thin liquid films
is independent of the intensity of the incident light and becomes a function of thickness
alone.

In this paper, we report a simple planar laser induced fluorescence technique similar
to that of Alekseenko et al. (2009) to measure the instantaneous local thickness of a
thin moving liquid sheet. This technique captures not only the thickness profiles of an
undulating liquid sheet but also that of the centerline displacement of the wavy liquid
sheet in response to external disturbances. Thus, knowledge of the thickness variation
along with the lateral displacement of the liquid sheet can be used to characterize the wave
motion in terms of wave amplitude, growth rates and phase velocities of both sinuous and
varicose modes. The measured thickness profiles for the smooth liquid sheet (Wed 6 540)
and in the absence of external disturbances shows the expected 1/r dependence and is
in good agreement with theoretical predictions for a wide range of Wed. In the presence
of external forcing, the sheet thickness is indistinguishable from that measured in its
absence, suggesting that the varicose wave amplitudes are lower than the resolution of
our experimental technique (±0.5µm being the standard deviation). On the other hand,
the measured sinuous phase velocities and growth rate vary with radial distance and are
compared with the predictions of Tirumkudulu & Paramati (2013). The remaining paper
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S0 + hplνex → S2
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S2 → S1 + hplνex

′

Figure 1. Absorption and emission of a photon by a fluorescent molecule due to the collision
of a dye molecule with surrounding molecules.

is organized into three parts with the first dealing with experimental methodology for
measuring sheet thickness while the second part presents results of the experiments and
comparison with theory. We conclude with comments on the implications of the study.

2. Experimental Methodology

2.1. Basic principle of the laser induced fluorescence (LIF) technique

The laser induced fluorescence is based on the principle that electrons of fluorescent
molecules can be excited from a ground state (S0) to an electronically excited state (S2)
by incident photons of energy hplνex, as shown schematically in figure 1 (Crimaldi 2008).
Here, hpl denotes Planck’s constant, and νex is the frequency of incident light. The excited
molecules relax to an intermediate state (S1) by emitting a photon excitation light of
energy hplν

′
ex because of collision of the excited molecules with surrounding molecules

in the excited state. Due to energy dissipation during the excited-state life time, the
energy of an emitted photon is always lower than the excited energy of the photon (i.e.,
ν′ex < νex) .

The amount of absorbed excitation light by a given volume of fluid containing fluores-
cent molecules can be expressed by Beer-Lambert’s law,

IA = I0 − I0e−εhc = I0(1− e−εhc). (2.1)

Here, IA is the absorbed power, I0 is the excitation power, ε is the molar extinction
coefficient which depends on the wavelength of incident light, h is the path length through
the sample, and c is the concentration of fluorophore species. Therefore, the amount of
emitted fluorescence energy (If ) is proportional to the absorbed energy (IA) and quantum
efficiency of the dye (φdye),

If = IAφdye = I0φdye(1− e−εhc). (2.2)

2.2. Applying LIF to moving liquid sheet formed by jet impingement

The schematic diagram of the experimental setup is shown in figure 2 and is similar
to that reported earlier(Mulmule et al. 2010). Two identical converging nozzles made
up of borosilicate glass with an exit diameter of 1.62 mm and of length 12 cm are
used in the present experiments to obtain liquid sheets over a range of Weber numbers
(Wed = 300−1000). A three-dimensional traverse is used for positioning the two nozzles
such that the gap between the two nozzle is maintained approximately 3 mm, and the
horizontal axes of the two nozzles are adjusted with rotating stages so that they are
accurately aligned. A gear pump is used to pump the liquid from a tank to the nozzles,
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Figure 2. Schematic diagram of the experimental setup.(a) Side view that includes the speaker
arrangement for introducing disturbances at the impingement point. (b) Top view with the cam-
era positions for measuring the thickness modulation (position 1) and centerline displacement
(position 2).

and the flow through the nozzles is controlled with the help of rotameters. The gear
pump delivers smooth and pulseless flow and therefore does not introduce disturbances
in the flow. Experiments were also performed by connecting the piping to a continuous
supply of water from overhead tanks situated at a height of around 16 m with respect to
the experimental setup. The results were identical and therefore most experiments were
performed with the pump. Flow through the rotameters is calibrated with the help of
measuring cylinder and the measurement error in flow rate was less than 4%. Two air
vent valves are used to remove air bubbles in the flow so as to eliminate disturbances in
the flow. The liquid sheet is formed by head-on impingement of two opposing jets, while
ejected droplets from the periphery of the sheet are collected in a tray placed below the
traverse, and the same is recirculated to the tank. The axial distance between the tip of
each nozzle and the point of jet collision was carefully adjusted to obtain a smooth and
steady liquid sheet.

The components necessary to carry out the liquid sheet thickness measurements are
the jet impingement set-up as described above, fluorescent dye, an incident laser light
sheet and an optical system for measurement of the fluorescent emission. We chose Rho-
damine 6G fluorescent dye for the present work because its physical properties are ideal
– absorption (530 nm) and emission (560 nm) spectrum are completely separate, the dye
is water soluble and has high quantum efficiency and, furthermore, its excitation wave-
length matches the available Argon-Ion laser light source. The fluorescent dye of known
concentration is uniformly mixed in water to avoid the formation of any dye aggregates.
A thin vertical laser sheet (∼ 0.1 mm thickness) is generated by passing the laser beam
through a cylindrical lens. The vertical laser sheet slices the liquid sheet in a direction
perpendicular to the liquid sheet (Fig 2). This results in the emission of fluorescence
light along a vertical line formed by the intersection of laser sheet and liquid sheet. The
laser sheet is passed slightly off-center through the liquid sheet as the piping system and
the nozzle arrangement prevent it from passing through the center of the liquid sheet.
The emission from the fluorescent region is captured with a light sensitive high speed

CCD camera (Piker F032B model) for varying liquid flow rates. The camera is capable
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of achieving frame rates up to 1000 fps at a pixel resolution of 640 × 50 pixels. The
measurement of the liquid sheet thickness and the position of the centerline of the liquid
sheet require two different camera positions. In case of the former, the camera is placed
facing the liquid sheet almost parallel with the laser sheet (camera position 1, Fig 2(b))
so that the intensity variations due to thickness modulations can be observed clearly.
The camera is placed at an acute angle to the liquid sheet surface (camera position 2,
Fig 2(b)) for measurement of the liquid sheet’s centerline displacement.

For the conditions of the experiments presented here, the product of the molar extinc-
tion coefficient and dye concentration is in the range, cε = 54 cm−1 to 62 cm−1 with
the value of ε = 116000 M−1cm−1(Birge 1987). As the thickness of the liquid sheet is
very small (h� 1/εc), (2.2) can be simplified to obtain the fluorescence emission at any
location on the sheet,

Ithin ≈ I0φdyeεhc. (2.3)

The above expression shows that the fluorescence emission is proportional to the inci-
dent light intensity, dye characteristics of fluorophore and path length of liquid film. Once
the concentration of fluorescent species and the solvent is fixed, the only unknown in (2.3)
apart from the film thickness is the laser sheet intensity (I0) along its transmitted path
through the liquid sheet. The incident laser sheet intensity varies spatially, which was
determined by performing calibration experiments with optically thick films of known
thickness (h� 1/εc), so that for the conditions of the experiments, (2.2) simplifies to

Ithick ≈ I0φdye. (2.4)

In our experiments, thick films were obtained by using a rectangular cuvette of known
dimensions (20cm (height) × 4cm (width) × 1cm (thickness)) filled with the same flu-
orescent solution as that used for the liquid sheet experiment. The cuvette was placed
in the path of the laser sheet at the same location as the liquid sheet. The fluorescence
emission from the illuminated vertical section of the cuvette was recorded using camera
with all settings of the laser and the camera such as the laser operating power, camera
position, shutter speed and exposure time kept identical to that for the liquid sheet ex-
periments. Once Ithick is known, (2.3) and (2.4) together give the thickness of the liquid
sheet,

h =
Ithin

Ithick ε c
. (2.5)

The fluorescent intensities are obtained by post-processing of the captured images in

terms of grey levels along the illuminated sections using ImageJr and Matlabr soft-
wares.

2.3. Liquid sheet experiments with acoustic forcing close to the jet impingement location

Acoustic disturbances were introduced close to the jet impingement location resulting
in an undulating liquid sheet. This was achieved with a high sound intensity speaker (P

Audior C12-500MB, 50 Hz-2 KHz, programming power of 500W and sensitivity 96 dB)

connected to a QSCr GX5 (500W @ 8ohm) amplifier which in turn was connected to an

Agilentr 33220A signal generator. The latter was tuned to generate signals of varying
frequencies and amplitudes. The mouth of the speaker was covered by the diverging end
of a conical funnel while the converging end was connected to a hollow tube concentric
with one of the water nozzles (Fig 2(a)). The quality of the acoustic signals close to the

impingement location was checked with the help of B&Kr 2250L sound level meter for
different frequencies and sound pressure levels (SPLs). In all cases the frequency of the
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dominant peak was identical to that generated by the signal generator. Peaks were also
observed at higher harmonics but their intensity was lower by at least 30 dB. As soon
as the acoustics are switched on waves appear close to the impingement location and
propagate outward along the radial direction. It was also ensured that the sound level
was uniform around the mouth of the nozzle. This was confirmed by measuring the sound
pressure level at different locations around the nozzle.

We also checked whether acoustic forcing causes any significant variation in the diam-
eter of liquid jet. The jet was imaged at various frequencies and amplitudes and it was
found that there was no perceptible variation in the jet diameter, at least within camera’s
resolution (1 pixel = 8µm) which is less than 1% of jet diameter. We also determined
whether external acoustic forcing leads to flow rate variations. Polyamide particles were
dispersed in water and their motion was imaged inside the nozzle in presence of acoustic
forcing. A laser sheet aligned along the axis of the nozzle and intersecting it along its
vertical diameter revealed the motion of the particles via a camera placed transverse
to the plane of the sheet. The captured images are processed to track the position of
particles with time for each applied frequency and the velocity of the particles for each
radial position was determined as a function of time. There was no perceptible periodic
motion of the particles with acoustic forcing within the resolution of the technique, with
the velocity being the same irrespective of the forcing frequency. These results demon-
strate that there is no variation in jet diameter nor is there any change in the velocity
of the fluid in the presence of acoustic forcing. Based on above tests and visualization
of the displacement of sheet under fluorescence (to be described later), it is concluded
that sinuous disturbances originate at the impingement point and are convected radially
outward.

Finally, the sheet displacement at any location (along the fluorescent line) is obtained
by subtracting the position of the fluorescent line in the presence of acoustics with that in
its absence. As figure 2 shows, the camera in position 2 is used to determine the displace-
ment of the sheet centerline. Given that the line of sight (represented by the dashed line)
is at an angle of about 10◦ to the plane of the liquid sheet, the measured displacement
will be somewhat less (by cos(10◦) ∼ 0.984) than the true value. However, the normalized
displacement of the sheet centerline obtained by scaling the measured displacement with
that measured at the lowest radial location, will be the same irrespective of this angle.
We also note that the largest displacements lead to relatively small slopes ∼ 0.2 − 0.3
(angle ∼ 10◦ − 15◦). For very large slopes, we expect sections of the fluorescent line to
be blocked by parts of deformed sheet present in the light path between the fluorescent
line and the camera. However, this did not happen in any of the experiments confirming
that the deformations were small.

3. Results and discussion

3.1. Thickness distribution of a smooth liquid sheet in absence of forcing

Figures 3(a) and 3(b) presents emission from the fluorescent section of liquid sheet for
Wed = 332 and 478, respectively, which was off-center by 2.9 cm from the impingement
point. The emission images have been rotated by 900 with gravity direction being from left
to right. The corresponding extracted thickness distribution along the vertical fluorescent
line (a) and (b) is given in figures 3(c) and 3(d), respectively. The solid line in the
plots represents the theoretical thickness distribution (1.1). The measurements follow
closely the theoretical line for the entire thickness range. The scatter in the experimental
data was quantified by calculating the standard deviation about a moving average of
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(a) Fluorescent emission for Wed = 332 (b) Fluorescent emission for Wed = 478
 

h 
(μ

m
)

5

10

15

20

25

30

 

5

10

15

20

25

30

Z (cm)
−10 −5 0 5 10

−10 −5 0 5 10

Experiments (Wed=332)
Theory

O

X=2.9cm

Z=0

Z=+ve

Z=-ve
Laser path

R=6.1cm R=6.6cm

Top
Bottom

(c) Thickness distribution for Wed = 332
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Figure 3. Subplots (a) and (b) present the emission from the fluorescent section of liquid
sheet for Wed = 332 and 478, respectively. The emission images have been rotated by 900 with
gravity direction being from left to right. The corresponding extracted thickness distribution is
given in (c) and (d), respectively. The solid line in the plot represents the theoretical thickness
distribution (1.1). The inset in (c) and (d) includes a schematic of the circular sheet along with
the position of the intersecting vertical laser sheet. The bright rim region at the sheet edge seen
in (a) and (b) has been omitted in the plot.
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Figure 4. Thickness distribution of a liquid sheet for Wed = 540 at two different vertical
sections that are off-center by (a) 2.9 cm, and (b) 5.0 cm from the jet impingement point. The
solid line represents the theoretical prediction (1.1).

experimental data points. For all cases, the standard deviation was less than 0.5µm which
sets the resolution of the technique. An important point to note from figures 3(c) and
3(d) is that the measured thickness profile is nearly identical for the two cases, thereby
confirming that the thickness profile is independent of Wed. The maximum thickness
along the vertical line for both cases is found to be, hmax = 23µm± 0.5µm which closely
matches the theoretical value, hmax = 22.5µm.

Figure 4 shows the thickness distribution of a smooth liquid sheet (Wed = 540) at two
different vertical sections off-center by 2.9 cm and 5.0 cm from the impingement point.
Since the vertical sections are different for the two cases, the profiles are also different.
For the profile that is 2.9 cm away from the impingement point, hmax = 23µm± 0.5µm,
and that for 5.0 cm, hmax = 13.8µm ± 0.5µm, both of which agree fairly well with
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the theoretical maximum thickness values of 22.5µm and 13µm, respectively. A close
inspection of the measured profiles in all cases (including figures 3(c) and 3(d)) shows
that the sheet thickness in the upper regions of the sheet is slightly larger than that in
the lower region of the sheet. This small difference is attributed to the effect of gravity
that slows the liquid as it flows upward leading to a marginally larger than predicted
thickness in the upper regions and vice versa for the lower regions of the sheet.

These results suggest that the LIF technique can be successfully employed to measure
the thickness distribution of thin moving liquid sheets. Next, the technique is applied to
undulating liquid sheets to determine both the thickness modulation and the position of
the centerline.

3.2. Thickness distribution of a liquid sheet with acoustic forcing

Before discussing the results of the LIF technique, it is instructive to visualize the undu-
lating liquid sheet under normal light conditions. Figures 5(a) to 5(i) show the response
of the liquid sheet at Wed = 540 subjected to forcing at a frequency of 90 Hz and SPL of
85 dB at the impingement point. Figure 5(a) shows the smooth liquid sheet just before
the acoustics was introduced. After switching on the acoustics, surface ripples appear
first near the impingement location, and they travel outwards along the radial direction.
The presence of ripples is clear in images from t = 13/500 s onwards although a close
inspection reveals their presence near the impingement point at t = 3/500 s. When the
surface ripples reach a distance of about 4 cm from the rim, radial streaks originate at
that location and expand towards the edge of the sheet (figures 5(g) and 5(h)) leading to
a catastrophic break-up of the sheet edge. The liquid sheet suddenly shrinks in size by
ejecting tiny jets of water from the circumference of the sheet, as shown in figures 5(g)
to 5(h). The liquid sheet finally reaches a stable but smaller size and continues to flap in
response to the acoustics (figure 5(i)). These images appear similar to those of Mulmule
et al. (2010) where the entire liquid sheet is subject to external acoustic waves and those
of Bremond et al. (2007) where undulations were produced by head-on impingement of
a single laminar jet on a vibrating impactor.

As the above studies have demonstrated, the ripples correspond to sinuous waves that
travel radially outward from the impingement point. In the present case, the phase speed
of the sinuous wave is smaller than the liquid speed and this is confirmed by noting
that the ripples (in figure 5) take about 0.034 s to travel about 7 cm radially outwards
compared to 0.014 s (calculated from the known jet speed) for a liquid element for
the same distance. The radius of the undisturbed sheet is about 10 cm (figure 5(a)).
Furthermore, the time period of a single acoustic cycle in figure 5 is 0.011 s, suggesting
that every fluid element sees one full acoustic cycle before reaching the edge.

We used the LIF technique to capture the thickness modulations and therefore the
varicose mode of the undulating liquid sheet in presence of acoustic forcing. Before per-
forming the experiments on the liquid sheet, we tested the applicability of the technique
on an undulating soap film forced by acoustics. The measured relative thickness distri-
bution agreed well with those obtained via the interference technique(Boudaoud et al.
1999) in terms of the location of the minima and maxima in the thickness distribution,
thereby establishing the applicability of the LIF technique for measuring the thickness
of undulating films.

Next, the thickness modulation was obtained for a liquid sheet at Wed = 540, sub-
jected to a frequency of 90 Hz and forced at two different SPLs, namely, 80 dB and 85
dB. Capturing the initial transient in the thickness modulation when the outer sections
of the sheet break was difficult because of the formation of radial streaks on the sheet.
The latter appear as bright spots in the captured fluorescence images and prevent reliable
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Figure 5. Time evolution of the deformation of a smooth liquid sheet (Wed = 540) excited by
a disturbance introduced at the impingement point with a forcing frequency of 90 Hz and SPL
of 85 dB. The white scale bar at the top left corner of each image corresponds to 3.0 cm. Each
sub-figure includes the time elapsed after turning on the acoustics.

measurement of the thickness during this time interval. Therefore, in all cases, measure-
ments were made after the sheet had reached a stable size following the initial transient.
The film thickness profile is presented in figure 6 for the two cases along with that mea-
sured in the absence of acoustics. As expected, the sheet radius reduces with an increase
in the SPL. Clearly, within the resolution of the technique (s.d. of ±0.5µm), there are no
perceptible thickness modulations in the liquid sheet at the two SPLs and they match
with the thickness obtained in the absence of acoustics, indicating that the thickness
modulation if any, is below the resolution of the experimental technique. Therefore, in
the rest of the paper, the focus will be on the dynamics of the sinuous wave.

3.3. Growth rates and phase velocities of the sinuous wave

The centerline position of the liquid sheet was obtained by analysis of images that were
taken by the camera located at position 2 (figure 2(b)). The centerline position corre-
sponds to the location of the maximum intensity pixel along the length of the vertical
fluorescent section of the liquid sheet. Experiments were performed in the frequency range
of 60 Hz to 250 Hz and at different SPLs. Figure 7 presents the centerline position of the
liquid sheet as a function of the radial co-ordinate at different time steps for Wed = 540
and for acoustic forcing at 80 Hz, 80 dB. Here, Yi is the deviation of the sheet’s cen-
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Figure 6. Thickness distribution of a fully developed liquid sheet (Wed = 540) in the absence
of forcing, when it is excited at 90 Hz at two different SPLs of 80 dB and 85 dB. Note that the
thickness is plotted as a function of the radial distance from the impingement point. The distance
between the fluorescent vertical section on the liquid sheet and the impingement location is 3.0
cm. The radial extent of the sheet (R) is included for each case.

terline position from its base state (i.e., in the absence of acoustics), and the time data
in each sub-figure corresponds to the time elapsed after switching on the acoustics. The
sub-figure also includes the radius of the liquid sheet in each frame. The images for this
data set were taken at a frame rate of 442 fps.

As soon as the forcing is turned on, the central section of the liquid sheet is displaced
first which subsequently generates a sinuous wave that travels radially outward. The
amplitude of the wave increases initially as it propagates some distance and thereafter
starts to decrease close to the rim. The outer regions of the sheet break at around
t = 24/442 s when the sinuous wave reaches close to the rim of the sheet. Note that
this occurs after more than 4 time cycles of forcing confirming that regions close to the
impingement point are displaced first. The sheet radius reduces to a stable value of 6.8
cm at t = 27/442 s, though the sheet continues to respond to forcing.

The time evolution of the sinuous wave yields the wave envelope that consists of data
points corresponding to the maximum displacement of the sinuous wave along the length
of the sheet. The envelope was obtained by overlapping the wave forms of at least 30
consecutive time points (more than 4 time cycles for most frequencies tested). Figure 8
presents four such plots, two each for Wed = 540 and 990. While the former corresponds
to the smooth regime, the latter is in the transition regime. Comparison of the overall
profile of the envelopes indicates no qualitative difference between the profiles for the
two regimes. In all four cases, the sheet centerline displacement increases with radial
location close to the impingement point suggesting that the liquid sheet is unstable to
perturbations introduced close to the impingement point. The envelope exhibits a peak
that occurs at a smaller radial distance for the lower Wed compared to that observed
for Wed = 990. The envelope for the lower Wed appears to rise towards a second peak
before reaching the edge of the sheet, while the sheet breaks before the appearance of
such a feature at the higher Wed.

Given the similarity of the envelopes for the smooth and the transition regimes, we
compare, in figures 9 and 10, the measured envelope with the predictions of the recent
theory(Tirumkudulu & Paramati 2013) that neglects the presence of the gas phase and
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Figure 7. Time evolution of the sheet’s centerline position for Wed = 540 when excited with a
forcing frequency of 80 Hz and SPL of 80 dB. The images are captured at a frame rate of 442
fps. The radial position of the last point on the right gives the radial extent of the sheet.

is strictly applicable only in the smooth regime. The radial coordinate is rendered di-
mensionless with the diameter of the jet, r̃ ≡ r/d, so that r̃/(Wed/8) = 1 corresponds
to the edge of the circular sheet in the absence of acoustics. The non-dimensional dis-
placements collapse for various SPLs in both cases indicating a linear response. However,
larger sheets are observed for lower SPLs. The breaking of the liquid sheet indicates the
presence of thickness modulation. Bremond et al. (2007) suggest that a flapping sheet
should be unstable to modulations induced by Rayleigh-Taylor instability for large trans-
verse oscillations of the liquid sheet. In our experiments, large initial amplitudes (due to
high dB) for a fixed frequency would lead to large transverse acceleration downstream of
the impingement point thereby breaking the sheet at lower radial distance. Such effects
may be explained by accounting for the aforementioned instability but is beyond the
scope of the current investigations.

The experimental error in the measurement of the centerline position due to the finite
size of the camera pixel is represented by an error bar and is included only for the data
point representing the maximum displacement. Note that the error bars for the rest of the
data points for a given set have not been shown but are identical to that for the maximum
displacement. The evolution of sinuous disturbance from theory is obtained by plotting
the complex roots (Sr(r)cos(ωt)−Si(r)sin(ωt)) of (1.4) at different time steps, where Sr
and Si are the real and imaginary parts, respectively, of the disturbance. The theoretical
envelope was obtained by overlapping the above solution for many time steps for the
experimental frequencies. The initial dimensionless displacement was obtained from the
measured value closest to the impingement point. Figure 9 presents the results for the
smooth regime (Wed = 540) for four different frequencies. At the lowest two frequencies,
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Figure 8. Experimental envelopes of a liquid sheet of Wed = 540 and 990 forced at a frequency
of 80 Hz and 90 Hz. In all four cases, the sheet has reached a steady size after an initial transient.

the predicted envelope exhibits a spatial growth rate similar to the one observed, except
for the presence of an early peak (or antinode) in the theoretical profile that is absent in
the experiments. The magnitude of the envelopes predicted by theory matches remarkably
well for distances far from the point of impingement (i.e., after the first peak). As the
frequency increases, the theory predicts an increasing number of peaks in the envelope
over the same spatial domain. A similar observation is made in experiments where a
second peak is observed at 100 Hz (85 and 90 dB). At the highest frequency tested (110
Hz), the measured envelope is below that predicted by the theory. It was observed that as
the frequency was increased, a larger SPL was required to observe a perceptible response.
Thus a weak response was observed for 100 Hz at 80 dB, while there was no measurable
response for 110 Hz at the same SPL. These observations can be explained by balancing
the periodic forcing across a section of liquid sheet close to the point of impingement
with mass times the acceleration imparted to that section,

Pm cos(ωt) ∼ hρl
d2z

dt2
(3.1)

where Pm is the magnitude of the pressure difference across the section of the sheet of
thickness h, and z denotes the displacement of the section of the sheet. Integrating the
above relation in time gives,

z ∼ Pm cos(ωt)

hρlω2
(3.2)
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Figure 9. Sinuous wave envelope for Wed = 540 at varying forcing frequencies and SPLs.

suggesting that the displacement imparted to the impingement point will decrease in-
versely with the square of the forcing frequency. For small displacements, viscous dissi-
pation may damp out the disturbances leading to non-overlapping growth curves (figure
9(c)).

Next, the predictions are compared to the envelopes obtained for the higherWed (figure
10) which lies in the transition regime. As before, the measured envelopes collapse for
the various SPLs for the two lower frequencies. In contrast to the lower Wed, only a
single peak is observed at all frequencies and SPLs. The sheet was far more sensitive to
perturbation, since an SPL as low as 65 dB was able to elicit a measurable response.
Again, the first peak predicted by theory is missing in the experiments, although the
observed trend of the sinuous disturbance is similar to that predicted and the height of
the predicted envelope matches the measurements far from the impingement point. The
sheet was unstable for a range of SPLs and for the frequencies tested. At the two higher
frequencies of 140 Hz and 150 Hz, the envelopes are similar only at the highest SPLs.
These results clearly show that even at a Weber number as high as 990, the amplitude
of the envelope predicted by the model is of the same magnitude as that observed in
experiments. The mismatch between prediction and measurement for both high and low
Wed occurs at short distances from the impingement point. Specifically, the first peak
in the envelope is not observed in the experiments. While the cause for this discrepancy
is not clear, it could be attributed to one of the several approximations made in the
model. First, the model assumes that the sheet thickness is small compared to the radial
distance which is not applicable to regions close to the impingement point. As Crapper
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Figure 10. Sinuous wave envelope for Wed = 990 at varying forcing frequencies and SPLs.

& Dombrowski (1984) note, the rapid rate of thinning in these regions would indeed
influence the growth rate and it is expected to be different from that predicted by our
asymptotic solution. It is also possible that the presence of the surrounding gas phase in
the experiments influences the initial growth rate due to the added mass effect since, for
high initial growth rates, the sheet will have to move the surrounding gas very rapidly
thereby increasing the inertia of the liquid sheet. Finally, the observed growth rates
could also be lower due to the dampening effect of liquid and/or gas viscosity. Despite
the approximations of the model, it should be noted that it is free of adjustable constants
and the envelope (non-dimensional) is a function of Weber number and forcing frequency
alone.

At this stage, it is instructive to determine the stability of liquid sheet in the presence
of gas phase from the analysis of Squire (1953), which accounts for the aerodynamic
interactions in a constant thickness sheet, and compare it with our theory. The dispersion
equation of Squire obtained for a moving thickness sheet of constant thickness is given
by,

ρl

(ω
k
− U

)2

tanh

(
kh

2

)
+ ρg

(ω
k

)2

= σk (3.3)

where k is the wavenumber and the disturbance is assumed to be of the form, exp (i(kx− ωt))
with x being the spatial coordinate. In the limit of large wavelengths such that kh << 1,
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Figure 11. The most unstable spatial growth rate for the dispersion relation obtained from
our theory (Thinning) and that obtained from Squire (Aerodynamic) as a function of the radial
location for Wed = 540 and 990 at 80 Hz.

the dimensionless form of the dispersion relation reduces to,

k̃3

[
1

2
− 4r̃

Wed

]
− k̃2ω̃ + k̃

[
ω̃2

2

]
+ 4 r̃ δ ω̃2 = 0, (3.4)

where δ = ρg/ρl, k̃ = kd, r̃ = r/d, and ω̃ = ωd/U and the film thickness is a function
of the radial coordinate (h = d2/4r). It can be confirmed that in absence of gas phase
(δ = 0), the above equations predict temporal (neutral) stability irrespective of the value
of film thickness. A similar, “locally parallel” ad hoc assumption, applied to the stability
equations (1.3) for sinuous disturbance on a radially expanding sheet with disturbance
of the form, exp (i(kr − ωt)), gives an approximate dispersion relation that accounts for
the effects of sheet thinning alone,
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]
+ k̃

[
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(
1

2
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4r̃
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)]
+

[
ω̃2

2
− i ω̃

2r̃

]
= 0, (3.5)

where r̃ = r/d. A close inspection of the above dispersion relation shows that it reduces
to (3.4) for the case δ = 0, when 1/r̃ → 0 (4r̃/Wed is bounded).

For experiments discussed here wherein the forcing frequency is held fixed while the
spatial growth of the sinuous wave is sought, we next investigate the spatial stability using
the above two equations (3.4 and 3.5) to evaluate the relative importance of aerodynamic
interactions and thinning on the stability of radially expanding liquid sheet. This involves
treating k̃ as complex for given real values of ω̃ and determining the wavenumber with the
largest (in magnitude) negative imaginary part. Further, it is confirmed that the solution
satisfies the causality condition in that the corresponding group velocity is positive for
x̃, r̃ > 0.

Figure 11 plots the most unstable spatial growth rate as a function of radial distance
obtained from solving (3.4) which accounts for aerodynamic interactions and (3.5) which
includes effect of sheet thinning. For regions close to the impingement point and the
rim, the spatial growth rates due to the thinning effect diverge. This is because of the
imaginary terms in the coefficient of k̃. In comparison, the spatial growth rate due to the
aerodynamic interactions increases from zero reaching a maximum at some radial location
and subsequently decreasing to zero inside the radial sheet. For the low Wed(= 540), the
thinning effects dominate everywhere except for a small region where the spatial growth
rates due to the aerodynamic effects are marginally greater. In case of the higher Wed,
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(b) Single jet

Figure 12. Regime map where the line (with ◦) separates regions in the ω̃ vs Wed space where
the thinning effects dominate and regions where effects due to both aerodynamic interactions
and thinning are important. (a) This plot corresponds to the case of the circular sheet produced
by head-on impingement of two jets, where h = d2/4r. The points (×,+) correspond to our
experiments, Wed = 540 and 990. (b) This plot corresponds to the case of the circular sheet
produced by a single jet impinging head-on to an impactor, where h = d2/8r. The points (×,+)
correspond to experiments of Bremond et al. (2007) for Wed = 850 and 990.

the aerodynamic effects dominate between radial positions (non-dimensional) of 0.1 and
0.65 while the thinning effects are important outside this region. These results suggest
that while aerodynamic interactions will dominate at high Wed over majority of the
sheet, there will be regions close to the impingement point and near the sheet edge
where thinning effects will dominate.

It is possible to determine the range of frequencies over which the most unstable spatial
mode due to aerodynamic interactions is higher than that due to thinning for some
radial location so that for frequencies outside this range, the thinning effects dominate
everywhere on the sheet (i.e., the dashed line in figure 11 is always below the solid
line). Figure 12(a) presents the regime map obtained from such a calculation, which
delineates regions where the thinning effects dominate and regions where both effects
become important. The regime map applies for liquid sheets produced by impingement
of two jets. For Wed < 509 and irrespective of the forcing frequency, the spatial growth
rates due to the thinning effect are greater than those due to aerodynamic interactions at
all radial locations of the thinning sheet. For Wed > 509 and over a frequency range, the
spatial growth rates due to aerodynamic effects are higher than those due to the thinning
effect over a section of the sheet though the predicted rates due to thinning diverge close
to the impingement point and sheet edge, and always dominate at these locations. Thus
Wed = 509 is the critical Weber number above which the aerodynamic effects will become
important over some section of the sheet and for a certain range of forcing frequencies.
The plot includes our experimental points for both Wed = 540 and 990 and at all
forcing frequencies tested in this study. Even though the points for Wed = 540 suggest
influence of both thinning and aerodynamic interactions, the spatial growth rate versus
radial position plot indicates aerodynamic effects to be marginally more important over
a small region of the sheet while the thinning effects dominate everywhere else. However,
at higher Wed, larger regions of the sheet are more susceptible to instability due to
aerodynamic interactions than due to thinning effects. Yet, the nature of agreement
between the predicted envelopes from our theory and those measured for both high
and low Wed appears similar (Figures 9 and 10). Indeed, Dombrowski and co-workers
(Clark et al. 1975) measured the spatial growth of sinuous waves on radially thinning



20 Manjula Paramati, Mahesh S. Tirumkudulu and Peter J. Schmid

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0

0 . 0 0
0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0
0 . 2 5
0 . 3 0

0 . 0 0
0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0
0 . 2 5
0 . 3 0

 

 
-Im

ag[
k]

r / ( W e d / 1 6 )

 A e r o d y n a m i c
 T h i n n i n g

(a) ω̃=0.95 (240 Hz)
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(b) ω̃=0.55 (140 Hz)
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Figure 13. The most unstable spatial growth rate for the dispersion relation obtained from
our theory (Thinning) and that obtained from Squire (Aerodynamic) as a function of the radial
location for Wed = 850, (a) 240 Hz, and (b)140 Hz. The lower two subplots present the measured
sinuous wave envelope for Wed = 850 along with that predicted by (1.4) for (c) 220, 240 and
260Hz, and (d) 140, 180, and 220Hz. These conditions correspond to the experiments of Bremond
et al. (2007).

liquid sheets produced by vibrating fan spray nozzles in the flapping regime and found
that Squire’s analysis over predicts the spatial growth rates for sinuous disturbances and
attributed the difference to the formation of vortices from wave crests, which dampen
the wave growth.

More recently, Bremond et al. (2007) studied the dynamics of sinuous disturbances on
a circular liquid sheet formed by a single laminar jet impinging on a vibrating impactor
and studied the growing sinuous wave in the transition/flapping regime. They derive
the spatial growth rate from Squire’s analysis (their equation (3.23)) based on which,
they further derive an expression for a cut-off forcing frequency beyond which the sheet
is unstable for radial distances less than the radius of the impact cylinder and thus
considered stable. They find the sinuous waves to grow even for frequencies beyond
the cut-off value and attribute it to the naturally most-amplified mode. The predicted
growth rates from Squire’s theory was found to be about two times that observed and so
they multiply the predicted growth rate by a factor of half to match the measurements.
However, in light of our findings, the sheet should be unstable even beyond the cut-off
frequency due to thinning effects where the spatial growth corresponding to the forcing
frequency is determined from (1.4). For the case of single jet impinging an impactor,
the film thickness is given by, h = d2/8r, and the corresponding dispersion relation that
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accounts for aerodynamic interactions is given by,

k̃3

[
1

2
− 8r̃

Wed

]
− k̃2ω̃ + k̃

[
ω̃2

2

]
+ 8 r̃ δ ω̃2 = 0, (3.6)

while that due to thinning alone is,

k̃2

[
1

2
− 8r̃
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]
+ k̃

[
−ω̃ +

i

r̃

(
1

2
+

8r̃

Wed

)]
+

[
ω̃2

2
− i ω̃

2r̃

]
= 0, (3.7)

Note that (3.6) is identical to equation (3.23) of Bremond et al. (2007).
Figure 12(b) presents the regime map for liquid sheets produced by impingement of

a single jet against an impactor and applies to experiments of Bremond et al. (2007).
In this case, the thinning effects dominate for Wed < 721 irrespective of the forcing
frequency. Note that the critical value of Wed = 721 is

√
2 times that for the two jet case

and is a consequence of the different thickness dependence on radial distance. The plot
also includes points for their experiments at Wed = 850 (140 to 260 Hz) and Wed = 990
(100 Hz). All frequencies for the lower Wed lie in the region where thinning dominates
the spatial growth at all radial locations and this is confirmed by plotting the most un-
stable spatial mode as a function of the radial distance for forcing frequencies of 240
Hz (figure 13(a)) and 140 Hz (figure 13(b)). While the spatial growth rates for thinning
do not change much in this frequency range, those obtained from Squire’s dispersion
relation reduce in magnitude and radial extent with increasing frequency. At the high-
est frequency (260Hz), the magnitude and radial extent of spatial modes from Squire’s
dispersion equation are insignificant compared to that obtained from our theory.

Figure 13(c) and 13(d) plots, respectively, the corresponding measured envelopes of
Bremond et al. (2007) for the reported range of forcing frequencies for Wed = 850.
Based on Squire’s analysis, Bremond et al. (2007) predicted the sheet to be spatially
stable for distances larger than the impactor’s radius for frequencies larger than a cut-off
frequency, which was determined as 220 Hz for Wed = 850. This is evident from Figure
13(a) for 240 Hz where the spatial growth due to aerodynamic interactions is confined to a
small region close to the origin. Frequencies larger than the cut-off value were considered
to be in the stable forcing regime while those below the value were supposed to be in
the unstable forcing regime. Figures 13(c) and 13(d) also include the envelopes predicted
by our theory. Here, the prediction of the sinuous wave envelope for the single jet case
is obtained by replacing the thickness profile for the two jet case in (1.4) with that for
a single jet, h = d2/8r. While the difference between the amplitude of the nodes and
antinodes of the predicted envelopes are larger than those observed in the experiments
and the locations of the nodes and antinodes appear to be somewhat shifted, the overall
growth is close to the observations. Specifically, the predicted positions of the nodes (and
antinodes) grow spatially at rates similar to those observed. Not only is the measured
distance between the first and second node (or antinode) for each frequency close to that
predicted, the shift in the location of the nodes (and antinodes) to lower radial location
with frequency is also captured correctly by the our model. Finally, the predicted first
antinodes for the three frequencies corresponding to stable forcing regime (figure 13(c))
are very close together, while the distance is much larger for the lower frequencies (figure
13(d)) which belong to the unstable forcing regime. The proximity of the antinodes in the
stable forcing regime was used as evidence to support their assumption that the naturally
most-amplified mode will be dominant irrespective of the forcing frequency in the stable
forcing regime. These features of the wave growth emerge naturally from our analysis
that accounts for thinning of the sheet, suggesting that thinning effects play a dominant
role here and is responsible for growth at all frequencies under these conditions.
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Figure 14. Measured sinuous wave phase speed for Wed = 540 and 990 at varying forcing
frequencies and SPLs along with predictions from (3.4) (Aerodynamic) and (3.5) (Thinning).

While the above discussion has focused on the growth of disturbance, it is also impor-
tant to compare the measured phase velocity of the disturbance with that predicted by
the two theories. The phase velocity was measured by tracking the position of a particular
crest of the growing sinuous wave in successive frames. Theoretically, the dimensionless
phase speed for the fastest growing spatial mode is given by,

ṽp =
ω̃

Re[k̃]
(3.8)

where Re[k̃] corresponds to the real part of the fastest growing spatial mode obtained
from (3.5). Figure 14 compares the measured phase velocity for the two Wed and for
two frequencies from our experiments with that obtained from both (3.4) and (3.5).
Recall that the spatial growth due to aerodynamic interactions spans only part of the
sheet which is reflected in the prediction for the corresponding phase speed for only that
section of the sheet. The measured phase speeds of the spatially growing wave matches
remarkably well with predictions that account for the thinning effect while that due to
the aerodynamic interactions are higher than the observed values. While these results
are consistent with the trend observed for the spatial growth predicted by (3.5) for the
lower Wed, the agreement for the case of higher Wed where aerodynamic interactions
dominate over the measured radial positions is surprising. The latter results seem to
suggest that even when aerodynamic interactions are dominant, the phase speed of the
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growing waves is governed by the thinning of the liquid sheet. A combined theory that
accounts for both effects may help resolve this discrepancy observed at high Wed.

4. Conclusions

Radially expanding liquid sheets are produced by head-on impingement of two laminar
liquid jets. In this study, the thickness of the liquid sheet was measured using laser
induced fluorescence which agreed with the theoretical prediction obtained by a simple
mass balance. When the impingement point is disturbed, sinuous waves produced close
to the impingement point travel radially outward. The phase speed of the sinuous waves
decreases while their amplitude grows as they propagate radially outwards. The phase
speed of the sinuous waves decreases while their amplitude grows as they propagate
radially outwards. Since there is no mechanism for energy dissipation in an inviscid
liquid sheet and therefore the energy carried by the wave remains constant, the reducing
wave speed and the thinning of the sheet causes the amplitude of the wave to increase in
the radially outward direction. At the edge of the sheet the wave speed goes to zero, and
so the amplitude diverges. Our experimental technique was unable to detect thickness
variations when exposed to acoustic forcing, suggesting that the amplitude of the varicose
modes was below the resolution of our experimental technique.

The phase speed and the envelope of growing sinuous wave was compared with predic-
tions of a recent theory for a radially expanding liquid sheet that accounts for the liquid
inertia, interfacial tension and thinning of liquid sheet while ignoring viscous effects and
inertia of the surrounding gas. While the overall trend of the measured spatial growth
of sinuous wave envelope for both Wed = 540 and 990 agreed with the predictions for
radial locations far from the impingement point, discrepancies were observed close to
the impingement point. These disagreements are most likely due to the non-applicability
of the asymptotic theory (which requires h/r << 1) close to the impingement point.
However, there was remarkable agreement between the predicted phase speed and the
measurements for both Wed and all forcing frequencies.

A comparison of the most unstable spatially growing wave mode obtained from the
dispersion relation that accounts for thinning with that from Squire’s analysis for a
constant thickness sheet that accounts for aerodynamic interactions shows that there
exists a critical Wed below which the thinning effects will dominate irrespective of forcing
frequency. For Wed greater than the critical value and over a frequency range, the spatial
growth rates due to aerodynamic effects are higher than those due to the thinning effect
over a section of the sheet though the predicted rates due to thinning diverge close to the
impingement point and sheet edge, and always dominate at these locations. Therefore
a correct theory for flows at high Wed would need to account for effects due to both
thinning of the liquid sheet and interaction with the surrounding gas phase. More recently,
Tammisola et al. (2011) have shown that the spatial growing sinuous waves in a constant
thickness liquid sheet is damped by the presence of viscous boundary layer near the
liquid-gas interface and therefore the predicted spatial growth rate is lower than that
predicted by the Squire’s analysis. A full theory would also need to account for such
effects.

Before closing, it is important to note that one of the standard techniques in the
stability literature is to make the “locally parallel” assumption for systems where the
geometry of the system changes slowly in the direction of disturbance propagation. What
we show here is that such an approximation can be flawed if the full dynamics of the
system is not properly accounted for.
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