310 research outputs found
The GEOS-3 orbit determination investigation
The nature and improvement in satellite orbit determination when precise altimetric height data are used in combination with conventional tracking data was determined. A digital orbit determination program was developed that could singly or jointly use laser ranging, C-band ranging, Doppler range difference, and altimetric height data. Two intervals were selected and used in a preliminary evaluation of the altimeter data. With the data available, it was possible to determine the semimajor axis and eccentricity to within several kilometers, in addition to determining an altimeter height bias. When used jointly with a limited amount of either C-band or laser range data, it was shown that altimeter data can improve the orbit solution
Comparison of Integrated Radiation Transport Models with TEPC Measurements for the Average Quality Factors in Spaceflights
The purpose of this work is to test our theoretical model for the interpretation of radiation data measured in space. During the space missions astronauts are exposed to the complex field of radiation type and kinetic energies from galactic cosmic rays (GCR), trapped protons, and sometimes solar particle events (SPEs). The tissue equivalent proportional counter (TEPC) is a simple time-dependent approach for radiation monitoring for astronauts on board the International Space Station. Another and a newer approach to Microdosimetry is the use of silicon-on-insulator (SOI) technology launched on the MidSTAR-1 mission in low Earth orbit (LEO). In the radiation protection practice, the average quality factor of a radiation field is defined as a function of linear energy transfer (LET), Q(sub ave)(LET). However, TEPC measures the average quality factor as a function of the lineal energy y, Q(sub ave)(y), defined as the average energy deposition in a volume divided by the average chord length of the volume. Lineal energy, y, deviates from LET due to energy straggling, delta-ray escape or entry, and nuclear fragments produced in the detector volume. Monte Carlo track structure simulation was employed to obtain the response of a TEPC irradiated with charged particle for an equivalent site diameter of 1 micron of wall-less counter. The calculated data of the energy absorption in the wall-less counter were compiled for various y values for several ion types at various discrete projectile energy levels. For the simulation of TEPC response from the mixed radiation environments inside a spacecraft, such as, Space Shuttle and International Space Station, the complete microdosimetric TEPC response, f( y, E, Z), were calculated with the Monte Carlo theoretical results by using the first order Lagrangian interpolation for a monovariate function at a given y value (y = 0.1 keV/micron 5000 keV/micron) at any projectile energy level (E = 0.01 MeV/u to 50,000 MeV/u) of each specific radiation type (Z = 1 to 28). Because the anomalous response has been observed at large event sizes in the experiment due to the escape of energy out of sensitive volume by delta-rays and the entry of delta-rays from the high-density wall into the low-density gas-volume cavity, Monte Carlo simulation was also made for the response of a walled-TEPC with wall thickness 2 mm and density 1 g/cm(exp 3). The radius of cavity was set to 6.35 mm and a gas density 7.874 x 10(exp -5) g/cm(exp 3). The response of the walled- and the wall-less counters were compared. The average quality factor Q(sub ave)(y) for trapped protons on STS-89 demonstrated the good agreement between the model calculations and flight TEPC data as shown. Using an integrated space radiation model (this includes the transport codes HZETRN and BRYNTRN, the quantum nuclear interaction model QMSFRG) and the resultant response distribution functions of walled-TEPC from Monte-Carlo track simulations, we compared model calculations with walled-TEPC measurements from NASA missions in LEO and made predictions for the lunar and the Mars missions. The Q(sub ave)(y) values for the trapped or the solar protons ranged from 1.9-2.5. This over-estimates the Qave(LET) values which ranged from 1.4-1.6. Both quantities increase with shield thickness due to nuclear fragmentation. The Q(sub ave)(LET) for the complete GCR spectra was found to be 3.5-4.5, while flight TEPCs measured 2.9-3.4 for Q(sub ave)(y). The GCR values are decreasing with the shield thickness. Our analysis for a proper interpretation of data supports the use of TEPCs for monitoring space radiation environment
Interpretation of TEPC Measurements in Space Flights for Radiation Monitoring
For the proper interpretation of radiation data measured in space, the results of integrated radiation transport models were compared with the tissue equivalent proportional counter (TEPC) measurements. TEPC is a simple, time-dependent approach to radiation monitoring for astronauts on board the International Space Station. Another and a newer approach to microdosimetry is the use of silicon-on-insulator (SOI) technology launched on the MidSTAR-1 mission in low Earth orbit (LEO). In the radiation protection practice, the average quality factor of a radiation field is defined as a function of linear energy transfer (LET), Qave(LET). However, TEPC measures the average quality factor as a function of the lineal energy y, Qave(y), defined as the average energy deposition in a volume divided by the average chord length of the volume. The deviation of y from LET is caused by energy straggling, delta-ray escape or entry, and nuclear fragments produced in the detector volume. The response distribution functions of the wall-less and walled TEPCs were calculated from Monte-Carlo track simulations. Using an integrated space radiation model (which includes the transport codes HZETRN and BRYNTRN, and the quantum nuclear interaction model QMSFRG) and the resultant response distribution functions from Monte-Carlo track simulations, we compared model calculations with the walled-TEPC measurements from NASA missions in LEO and made predictions for the lunar and the Mars missions. Good agreement was found for Qave(y) between the model and measured spectra from past NASA missions. The Qave(y) values for the trapped or the solar protons ranged from 1.9-2.5. This over-estimates the Qave(LET) values which ranged from 1.4-1.6. Both quantities increase with shield thickness due to nuclear fragmentation. The Qave(LET) for the complete GCR spectra was found to be 3.5-4.5, while flight TEPCs measured 2.9-3.4 for Qave(y). The GCR values are decreasing with the shield thickness. Our analysis of the measurements of TEPCs can be used for a proper interpretation of observed data of monitoring the space radiation environment
Prevalence, prenatal screening and neonatal features in children with Down syndrome: a registry-based national study
BACKGROUND:
Down syndrome (DS) is one of the most common chromosomal abnormalities among newborns. In recent years advances in perinatal and neonatal care have improved chance of survival for the children with DS. The objective of this Registry-Based study was to get more accurate data of DS prevalence with evaluation of antenatal screening, neonatal and maternal features among total births in Croatia from 2009 to 2012. ----- METHODS:
We used retrospectively collected data for DS newborns from the medical birth database and perinatal mortality database for the period of 2009-2012. Differences between DS and the referent population for each year in quantitative measures were assessed with the independent t-test. Other differences in nominal and categorical values were analyzed with the chi-square test. ----- RESULTS:
The total prevalence for DS in the period of 2009-2012 was 7.01 per 10,000 births, while the live-birth prevalence was 6.49 per 10,000 births. The significant differences (p < 0.05) between the DS and reference populations for each year were noticed for birth weight and length, gestational age, mother age, Apgar score of ≥6 after 5 min and breastfeeding. Among newborns with DS, there were 64 (53.33 %) males and 56 (46.67 %) females versus 88,587 (51.76 %) males and 82,553 (48.23 %) females in the reference population. In the DS group compared to the reference population the mean birth weight was 2845 grams versus 3467 grams in males and 2834 grams versus 3329 grams in females, respectively, with a mean birth length of 47 cm versus 50 cm for both genders. The mean gestational age of the DS births was 37 weeks and the mean age of the mothers was 32.6 years, versus 39 weeks and 29.1 years, respectively, in the reference population. Only 68.3 % of children with DS were breastfed from birth, compared with 94.72 % of children in the reference population. ----- CONCLUSIONS:
The significant differences for neonatal and maternal features between DS and the referent population were found similar to other studies. The total prevalence of DS in Croatia in the period of 2009-2012 was lower than the previously estimated prevalence based on EUROCAT data. The establishment of a new national registry of congenital malformations covering 99 % of all births in Croatia is necessary to improve the health and prosperity of children, adolescents and adults with DS in Croatia
Metodo per la stima del punto caldo di un nocciolo di reattore nucleare basato su tecniche perturbative generalizzate (GPT)
Viene descritto un metodo mediante il quale I'informazione ottenuta in tempo reaIe
attraverso un sistema di dispositivi di misura neutronica SPND (collettroni) inseriti nel
nocciolo di un reattore nucleare di potenza (in particolare, un PWR) consente la
rilevazione in tempo reale di un eventuale punto caldo durante I'operazione dell'impianto. II metodo si basa sulle tecniche perturbative GPT (Generalized
Pertubation Methods), per il calcolo dei coefficienti di sensitivita delle quantita integrali
misurate con i collettroni rispetto ai parametri considerati per rappresentare il punto
caldo, e nell'uso di tecniche di inferenza statistica che tengono conto degli errori
associati alle misure. La metodologia consente anche di valutare I'effetto sulla qualita
del sistema di rilevazione dovuto al possibile degradarsi dei dispositivi di misura durante il cicio di vita del nocciolo. Questa informazione può essere utilizzata per poter
predisporre una strategia di protezione adeguata in termini di qualita, numero e
distribuzione dei collettroni
Classification of synoptic and local-scale wind patterns using k-means clustering in a Tyrrhenian coastal area (Italy)
In coastal regions, the complex interaction of synoptic-scale dynamics and breeze regimes influence the local atmospheric circulation, permitting to distinguish typical yet alternative patterns. In this paper, the k-means clustering algorithm is applied to the hourly time series of wind intensity and direction collected by in-situ weather stations at seven locations within 30 km from the western coastline of central Italy, in the proximity of Rome, over the period 2014–2020. The selection of both wind-integral quantities and ad hoc objective parameters allows for the identification of three characteristic clusters, two of which are closely related to the synoptic circulation and governed by persistent winds, blowing from either the northeast or the southeast direction throughout the day. In the latter case, synoptic and mesoscale contributions add up, giving rise to a complex circulation at the ground level. On the contrary, the third cluster is closely related to the sea breeze regime. The results allow the identification of some general information about the low-level circulation, showing that the synoptic circulation dominates in winter and, partly, in spring and autumn, when high ventilation and low recirculation conditions occur. Conversely, during summer the sea breeze regime is more frequent and stronger, generating intense air recirculation. Our analysis permits to discern rigorously and objectively the typical coastal meteorological patterns, only requiring anemological in-situ data
Optimization of CO fermentation by Clostridium carboxidivorans in batch reactors: Effects of the medium composition
Objectives: The objective of this study was to investigate the effects of medium composition on CO fermentation by Clostridium carboxidivorans. The focus was to reduce the medium cost preserving acceptable levels of solvent production. Methods: Yeast extract (YE) concentration was set in the range of 0-3 g/L. Different reducing agents were investigated, including cysteine-HCl 0.6 g/L, pure cysteine 0.6 g/L, sodium sulphide (Na2S) 0.6 g/L, cysteine-sodium sulphide 0.6 g/L and cysteine-sodium sulphide 0.72 g/L. The concentration of the metal solution was decreased down to 25 % of the standard value. Fermentation tests were also carried out with and without tungsten or selenium. Results: The results demonstrated that under optimized conditions, namely yeast extract (YE) concentration set at 1 g/L, pure cysteine as the reducing agent and trace metal concentration reduced to 75 % of the standard value, reasonable solvent production was achieved in less than 150 h. Under these operating conditions, the production levels were found to be 1.39 g/L of ethanol and 0.27 g/L of butanol. Furthermore, the study revealed that selenium was not necessary for C. carboxidivorans fermentation, whereas the presence of tungsten played a crucial role in both cell growth and solvent production. Conclusions: The optimization of the medium composition in CO fermentation by Clostridium carboxidivorans is crucial for cost-effective solvent production. Tuning the yeast extract (YE) concentration, using pure cysteine as the reducing agent and reducing trace metal concentration contribute to reasonable solvent production within a relatively short fermentation period. Tungsten is essential for cell growth and solvent production, while selenium is not required
Modelling present and future climate in the Mediterranean Sea: a focus on sea-level change
We present results of three simulations of the Mediterranean Sea climate: a hindcast, a historical run, and a RCP8.5 scenario simulation reaching the year 2100. The simulations are performed with MED16, a new, tide-including implementation of the MITgcm model, which covers the Mediterranean—Black Sea system with a resolution of 1/16°, further increased at the Gibraltar and Turkish Straits. Validation of the hindcast simulation against observations and numerical reanalyses has given excellent results, proving that the model is also capable of reproducing near-shore sea level variations. Moreover, the spatial structure of the elevation field compares well with altimetric observations, especially in the Western basin, due to the use of improved sea level information at the Atlantic lateral boundary and to the adequate treatment of the complex, hydraulically driven dynamics across the Gibraltar Strait. Under the RCP8.5 future scenario, the temperature is projected to generally increase while the surface salinity decreases in the portion of the Mediterranean affected by the penetration of the Atlantic stream, and increases elsewhere. The warming of sea waters results in the partial inhibition of deep-water formation. The scenario simulation allows for a detailed characterization of the regional patterns of future sea level, arising from ocean dynamics, and indicates a relative sinking of the Mediterranean with respect to the Atlantic more pronounced than the current one
GEOS-3 ocean geoid investigation
A determination of the fine scale sea surface topography in the GEOS-3 calibration area using the radar altimeter data is presented. Estimates of the north-south and east-west components of the deflections of the vertical as well as values of the geoidal heights were made. Three major stages of processing were used in obtaining the final results. The first two use pass processors; in the final stage, the processor combines all the pass results to compute the final results. The results obtained compare favorably with gravimetrically determined geoids for this calibration area
Strategic Research Agenda towards innovation in Blue Energy
This document contains the Strategic Research Agenda to Innovation on Blue Energy developed in the framework of the PELAGOS project (D.4.2.1). Relying on both the current Research & Innvation guidelines and priorities established at European level for exploitating in the most effective way the potential of Ocean Energy and the knowledge acquired the activities of PELAGOS project at Mediterranean level, this document considers the strategic focus areas related to the most promising Marine Renewables Energy technologies in the Mediterranean area
- …
