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1. INTRODUZTION

The primavy objective of the ocean geoid investigation was
to determie the fine-scale sea surface topography in the GEOS-3
calibration area using radar altimeter data. North-south and
east-west components of the deflection of the vertical as well as
values of the geoidal heights were estimated from an analysis of

the dcta.

The raw data files as provided by Wallops Flight Center
(Ref. 1) contained all the necessary information to compute esti-
mates of the geoidal heights from the GEOS-3 altimeter data. Only
the altimeter data taken in the short-pulse mode were used for the
investigation. Three major stages of processing were used in ob-
taining the final results; the data flow diagram is shown in Fig.
1. The first two stages used pass processors. Each satellite
pass of altimeter data over the calibration area is individually
processed by these programs. Two different filter processors were
investigated. The objective of the tiaal processor was to combine
all of the pass results to produce the geoidal heights and deflec-
tions of the vertical. Two different methods were also investi-
gated in the final stage of processing.

A description of each processor is presented, as well as
final results.

Ref. 1. "GEOS-C Mission Plan," TK-6340-01, Wallops Sta-
tion, Wallops Island, VA.
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2. DATA PREPROCESSOR

The major objective of the data preprocessor was to inter-
face with the raw data as received from Wallops Flight Center and
transform them into a format more easily manipulated in the sub-
sequent stages of processing. The raw data were used to compute
estimates of the geoidal heights which were then aggregated and
transformed into measurements at equally spaced increments of arc
distance along the satellite subt ‘ack. A spacing of approximate-
ly 6.4 km between measurements wa. generated from the pass data,
and data aggregation was achieved using a second-order polynomial
smoother. The output of the preprocessor for each satel.ite pass
consisted of equally spaced geoidal height measuremente. The lat-
itude, longitude, and azimuth associated with each height mea-
surement were also saved. The azimuth defined the satellite pass
direction and was used by the final data processor.



3. FILTER PROCESSOR

The objective. f the second processcr were to further
smooth the output from the preprocessor and to compute the along-
track deflection angles from the geoidal height measurements.

Two different methods were investigated:

1. A Martin-Graham low-band pass filter (Ref. 2) and

2. A filter based on the Wiener-Kolomogoroff theory
(Ref. 3).

3.1 MARTIN-GRAHAM FILTER

The Martin-Graham filter was the more flexible of the two
methods considered. Since it gives a choice of cut-off frequen-
cies, filter weights could be gencrated that would define the
highest frequency passed by the filter.

The Martin-Graham filter is characterized by the fact that
its transfer function is derivable from a transfer function hav-
m(w-w )

ing a roll-off of cos where w_ is the cnvi-off frequency,
UT-UC e
Yo the termination frequency, and w the independent variable.
Two specific low-pass Martin-Craham filters were studied for use
with the CEOS altimeter data. A smoother filter was used to gen-
erate smoothed data on deflections of the vertical. In general,
data having polynomial content, which is not band-limited, would
be effected in a strictly band-limited filter. To circumvent
this undesirable effect, both filters were developed so as to
pass without distribution linear functions of the height and

slopes.

Ref. 2. E. B. Anders, J. J. Johnson, A. D. Lasaine, P. W.
Spikes, and J. T. Taylo, Digital Filters, NASA Report CR-136,
December 1964.

Ref. 3. A. Papoulis, Probability, Random Variables and
Stochastic Processes, McGraw-Hill Book Co., New York, NY, 1965.




Simulation studies were made to verify the effectiveness
of the Martin-Graham filters. The selection of the cut-off and
termination frequencies is of fund mental importance for use in
processing the altimeter data. These determinations rere to be
made by studying the spectral component of local fine-scale grav-
ity surveys. However, prior to this it was decided to abandon
this approach in favor ¢f the Wiener filter for reasons given in
the following subsection.

3.2WIENER FILTER

The method investigated used a Wiener-Kolmogoroff nonrecur-
sive filter based on closed covariance expressions derived by
Tscherning end Rapp (Ref. 4). Although not as flexible as the
Martin-Graham filter, it was selected to process the data since
(a) it was capable of filtering the data to the estimated noise
level in the measurements (oy =~ 24 c¢m) and (b) it preserved the
physical significance associated with the covariance functions
used in weight computation.

Two sets of 35 weights were computed to process the data,
one set for generating smoothed height data and the second for
producing filtered deflection datn. The weights were generated
80 that the filtered result was based on data symmetrically
placed relative to the filtered noint. Figures 2 and 3 are
plots of the height and deflection weights, respectively, that
were used.

Using a typical pass of preprocessed altimeter data, Figs.
4 through 8 illustrate the type of results obtained with the Wiener
filter., Figure 4 is a plot of the gzoidal heights before filter-
ing. Time is used as the independent variable rather than arc
distance along the satellite subtrack. (One second is equivalent
to an arc distance of approximately 6.4 km.) The filtered heights
are plotted in Fig. 5; both curves are shown on the same plot in
Fig. 6; and the differences between the two heights are shown in
Fig. 7. The filtered minus smoothed height residuals have » mean
of =3.8 cm and sigma of 30 cm. Note the high-frequency structure
in the residuals. The filtered along-track deflection angles are
given in Fig. 8.

The filtered haight and deflectlion data computed from each
satellite pass by the filter processor are archived for use by ille
program used in the final stage.

Ref. 4. C. C. Tscheming and R. H. Rapp, ''Closed Covariance Fx=
pressions for Gravity Anomalies, Geoid Undulations, and Deflections
of the Vertical Implied by Anomaly Degree Covariance Models," Ohio
State University Report No. 208, May 1974.
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Deflection filter weights (rad/cm)
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Filtered minus smoothed height residuals (cm)
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Along-track deflection angle (arc sec)

Fig. 8 Filtered Along-Track Deflection Angles (Wiener filter, 35 weights,
short pulse mode). Latitude, longitude range from (30, 299") to
(417, 289°).
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4. GEOID DETERMINATION PROCESSORS

The objective of the final stage of processing was to com=
bine all of the pass results to produce geoidal heights and both
components of the deflection of the vertical. The data were pro-
cessed using two different methods. Brief descriptions of each
and the results obtained are given below.

4.1 PROCESSOR |

It was intended that the first processor be made as simple
as possible, yet provide reasonable value checks for ‘e subse-
quent processors. Thus the following approach was implemented.

4.1.1 Data Selection

Filtered passes outside the calibration grid were eliminat-
ed., Within each pass only data confined to the calibration grid
were kept. Following the selection process, the pass boundaries
were ignored. Processor I had two additional functions at this
stage:

1. To separate south- and north-going data and

2. To evaluate the functions at latitude or longitude
grid intersections.

The functions evaluated were geoidal height, deflection angle, and
either latitude or longitude. The "evaluation" was a simple aver-
aging of all data in the vicinity (+1°) of each latitude or longi-
tude grid intersection., Noisy data were eliminated using 3-sigma
testing.

4.1.2 Sorting

A standard sorting program was used that took the data and
sorted them into latitude, longitude or longitude, latitude order.
With Processor 1, the data have already been evaluated at either
latitude or longitude grid intersections. However, for Proces-
sor II, all the data nmust be sorted.

-13=



4.1.3 Function Eva'uation

The next module in Processor I cperatad on the sorted data
to evaluate the functions at either latitude or longitude grid
intersections. The evaluation was a simple averaging of all data
in the vicinity (#1°) of each latitude or longitude grid intersec~-
tion. (If data are at latitude grid intersection, then the aver-
aging 1s for longitude grid crossing and vice versa). The output
of this program is a table (file) of geoidal heights and deflec-
tions at grid intersections.

4.1.4 Generation of Geoidal Map

The final step in Processor I is to combine the four tables
(files) and to generate a map (table) of geoidal heights and east-
west and north-south deflections of the vertical. The north-south
pairs are averaged and then combined to generate the east-west and
north-south deflection angles. The geoidal height table is produced
by averaging the north and south geoidal heights. The results ob-
tained with this processor are shown in Figs. 9 through 1l1.

4.2 PROCESSOR 11

The second method incorporates a we’ hting function approach
for the modeling of irregular surface: developed by Junkins et al.
(Refs. 5 and 6). This method has mauy feitura2s desirable in pro-
cessing large quantities of data. It allowr the user to partition
the data into a sequence of overlapplug svusets, each of which is
processed separately. A separate model is used in fitting each
subset of data that is applicable only for that subset, thus re-
quiring overall a less sophisticated model. By the use of weight-
ing functions, nth-order continuity across boundaries of the sub-
sets can be enforced. A complete explanation of the method is
given in Refs. 5 and 6.

Ref. 5. J., L. Junkins. G. W. Miller, and J. R. Jancaitis,
"A Weighting Function Approach to Modeling of Irregular Surfaces,
J. Geophys. Res., Vol. 78, No. 11, 10 Apr 1973.

Ref. 6. J. R. Jancaitis and J. L. Junkins, '""Modeling in n
Dimensions Using a Weighting Function Approach," J. Geophys. Res.,
Vol. 79, No. 23, 10 Aug 1974.
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4.2.1 Segmentation of Data Into Blocks

Processor 11 requires as input a sorted .ata file (latitude,
longitude order) where all data are restricted to the calibration
grid. An output file is generated where data have been segmented
into grid areas with each group of data (grid block) preceded by
a special header record that identifies the block (beginning and
extent of latitude and longitude) and gives a count of the number
of data points (records) in the block. The output file (segmented
data file) is the input for Processor I1I.

4.2.2 Function Evaluation A

In each region, the filtered height measurements are repre-
sented as nth-order polynomials in ¢ and ) :

L L-2
e (1) £ m

D 3 YL TN ®

=0 m=0
where
%1'0'@1 v
BA = A=A,
Q(i)l(i)- reference origin associated with the ith region,

and

Alii)- fit parameters associated with the ith region.
The A, parameters are determined from a least-squares fit to the
filtered measurements.

Components of the deflection of the vertical are defined as

£ = - % gg (n-s component), (2a)
1 oK (e-w component), (2b)

== T cos ® oA

-]18-



Differentiating Eq. 1 yields

L-1 L-t-1
- - ql’- \ m
3 r: 2 Ay g (141 ot ™, (3a)
i=0 m=0
L-1 L-i=1
1 S
n® " T cos o Z 2 Ay uey (1) 97 827 . (W)
i=C m=0

Thus :the fitted Alm values are also used to define the £ and n
components.

The results of this determination are presented in Figs.
12 through l4.

4.2.3 Function Evaluation B

This final method also uses the weighting function algo-
rithm described in Refs. 5 and 6. However, here the A, para-
meters are determined from a least-squares fit to the fithrad
along-track deflection angle measurements. In each region, the
deflection angle is modeled as

61 = -(E£ cos A, +n sin A:) . (4)

where A is the azimuth angle associated with the measurement
point. “The filtered along-track deflection angles are computed
such that

aH

g » 2=

as ’

(3)

where s defines distance along the satellite subtrack (thus, the
need for the minus sign in Eq. 4). The functional forms for £ and
n are given by Eq. 3.

-19-
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In this least-squares fit, the A 0 parameter is not esti-
mated. Thus, the height as defined in zﬂ. 1 can only be computed

—ath _
minus the constant, AOO ($:8., AH1 H Aoo).

A value for Aoo(i) is then estimated by computing the mean

value of Hn - Aﬂ(i) for the region being processed.

The results of this method are presented in Figs. 15 through
37,

«3 %



-—vz—

Latitude (deg)

40
38—
1 Norfolk
36 —
Hatteras

34 —

Charleston

Savannah
32~-1
™

30— Jacksonville
28 —
26 Miami

| T | ! | Y | T | L) I ' | v | L | ¥ | . | "

278 280 282 284 286 288 290 292 294 296 298 300

Longitude (deg)

Fig. 15  Geoid Height Determined from GEOS-3 Altimeter Data Determined
from Filtered Along-Track Deflection Data.



._g Z-

ik AR S B IRy

38 —
i Norfolk
36 — :
Hatteras 5
it s 4 : R
i & $
- Ct Charleston 1
2 Sl
% i avanna .Bermuda
= 4
\
30— Jacksonville
28
P i $ HISS
26 Miami
1 T | ! 1 i 1 | ' 1 » | L 1 v 1 v | 1 '
278 280 282 28B4 286 288 290 292 294 296 298 300

Longtiude (deg)

Fig. 16  North-South Component of the Defiections of the Vertical
Determined from Filtered Along-Track Deflection Data.

e e

B ——




_gz_

Latitude (deg)

3 Norfolk
36— -
Hatteras \
34 -
] Charleston
Savannah
32—
L ]
30— Jacksonville
28—
261 Miami
1 T T T T P T T T T T I - i T - T - T
278 280 282 284 286 288 290 292 294 296 298
Longitude (deg)
Fig. 17  East-West Component of the Deflections of the Vertical Determined

from Filtered Along-Track Deflection Data.

300



5. CONCLUSIONS

The results obtained with the three different methods are
very similar. The rms height difference among the three methods
is only 0.5 m. The results also compare favorably with gravi-
metrically determined heights in the calibration area as well as
with those obtained by Hadgigeorge and Trotter (Ref. 7). The rms
of the deflection differences between the last two methods were 2
ard 1.2 arc sec in £ and n, respectively, versus 3 and 2.5 arc
sec for the differences with method one.

In the final two methods, second-degree polynomials in %
and ) were used to model the height in each region. The rms of
the fits to the filtered height and the along-track deflection data
were 3.1 m and 3.2 arc sec, respectively, with both methods. The
use of a higher degree polynomial in the fit did not significantly
improve these results.

Ref. 7. G. Hadgigeorge and J. E. Trotter, '"Short Arc Reduc-
ticns of GEOS-3 Altimetric Data," Geophys. Res. Lett., Vol. &,
No. 6, Jun 1977.
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