NASA Contractor Report 141441

```
(NASA-CR-141441) THE GEOS-3 ORBIT
DETERMINATION INVESTIGFTION (Applied Physics
Lab.) \(103 \mathrm{p} H C\) A06/MF A01 CSCL 22A
```


The GEOS-3 Orbit Determination Investigation

VL Pisacane, A Eisner, S M Yionoulis, R.J McConahy, HD Black, LL Pryor

July 1978

The GEOS-3 Orbit Determination Investigation

VL Pisacane, A Eisner, S M Yionoulis, R J McConahy, H D Black, LL Pryor

The Johns Hopkins University
Applied Physics Laboratory Johns Hopkins Road
Laurel, MD 20810

Prepared Under Purchase Order No P57,606(G)

National Aeronautics and
Space Admınıstration
Wallops Flight Center
Wallops Island, Virginia 23337
AC 804 824-3411

CONTENTS: \cdot

List of Illustrations v
List of Tables V717
1.0 Objectives and Plan of Attack 1
2.0 Data Limitations on the Scope of the Experiment 2
3.0 Computer Software 3
3.1 System Flow 3
3.2 Navigation in the EDITOR 3
4.0 Orbit Determination Using Synthetic Data 6
5.0 Preliminary Orbit Determination Results 9
5.1 Introduction 9
5.2 Orbit Determination, 1975 Days 113 to 114 9
5.3 Orbit Determination, 1975
Days 115 to 116 13
6.0 Orbit Determination with GEM-9 Geodesy Using 1976 Data 23
6.1 The Base or Reference Ephemerides 23
6.2 Orbit Determination without Altimeter Data 31
6.3 Orbit Determination with Altimeter Data 36
7.0 Summary 53
8.0 Conclusions 54
9.0 Recommendations for Further Study 55
Acknowledgments 56
References 57

```
Appendix A, Description of the Software
    Modules . . . . . .
Appendix B, MSR Coordinate System
    (Deformation) . . . . . . . . 64
Appendix C, Prelimznary Orbit Determination
    Results (Supplementary Material for -
    Section 5.0)
Appendix D, Orbit Determination with GEM-9
    Using 1976 Data (Supplementary Material
    for Section 6.0) . . . . . . . . 74
```


ILLUSTRATIONS

1 System Flowchart 4
2 GEOS-3 Pass Navigation Residuals, Doppler Data, 1975 Days 113 and 114 10

3 GEOS-3 Doppler Navigation Residuals, 1975 Days 115 and 116

4 GEOS-3 C-Band Range Residuals, Large Bias and Drift, Station 428216

5 GEOS-3 C-Band Range Residuals, Sma11 Bias and Drift, Station 476017

6 GEOS-3 C-Band and Laser Navigation Residuals for Doppler Orbit, 1975 Days 114 and 11518

7 GEOS-3 Altimeter Height Residuals for Doppler Orbit, 1975 Days 115 and 11620

8 GEOS-3 Combined Navigation Residual Reference Track, 1976 Days 62 to 6327

9 GEOS-3 Combined Navigation Residual Reference Track, 1976 Days 64 to 6528

10 GEOS-3 Doppler Residuals (backdate from reference track), 1976 Days 62 to 6332

11 GEOS-3 Doppler Residuals (update from reference track), 1976 Days 64 to 6533

12 GEOS-3 Ephemeris Differences, Two Passes, Station 4150 (no altimeter) Track, Reference Ephemeris, 1976 Days 62 to 6337

13 GEOS-3 Ephemeris Differences, Two Passes, Station 4150 (no altimeter) Track, Reference Track, 1976 Days 64 to 65 38

14 GEOS-3 Altimeter Height Residuals (m) versus Time (h. min) for Reference Orbit, 1976 Day 62 40
15 GEOS-3 Height Residuals (m)"versus Time (h. min) for Reference Orbit, 1976 Day 63 41
16 GEOS-3 Altimeter Height Residuals (m) versus Time (h. min) for Reference Örbit, 1976 Day 64 42
17 GEOS-3 Altimeter Height Residuals (m) versus Time (h. min) for Reference Orbit, 1976 Day 65 43
18 GEOS-3 Altimeter Height Pass Residuals for Reference Orbits, 1976 Days 62 to 65 44
19 GEOS-3 Ephemeris Differences, Two Passes, Station 4150 (with altimeter) Track, Reference Track, 1976 Days 62 to 63 48
20
GEOS-3 Ephemeris Differences, Two Passes, Station 4150 (with altimeter) Track, Reference Track, 1976 Days 64 to 65 42
C-1 GEOS-3 Spatial Distribution of Altimeter Data, 1975 Days 113 to 114 70
C-2 Doppler Tracking Sites, 1975 Days 115 and 116 71
C-3 C-Band and Laser Tracking Sites, 1975Days 115 and 11672
C-4 GEOS-3 Spatial Distribution of Altimeter Data, 1975 Days 115 and 116 73
D-1 GEOS-3 Doppler Navigation Residuals (reference track), 1976 Days 62 to 65 82
D-2 GEOS-3 C-Band Navigation Residuals (reference track), 1976 Days 62 to 63 83
D-3 GEOS-3 Laser Navigation Residuals (reference track), 1976 Days 62 to 63 84
D-4 GEOS-3 Doppler Navigation Residuals (reference track), 1976 Days 64 to 65 85
D-5 GEOS-3 C-Band Navigation Residuals (reference track), 1976 Days 64 to 65 86
D-6 GEOS-3 Laser Navigation Residuals (reference track), 1976 Days 64 to 65 87
D-7 GEOS-3 Ephemeris Differences (referencebackdate - reference track), 1976Days 62 to 63
D-8 GEOS-3 Ephemeris Differences (reference update - reference track), 1976Days 64 to 65 89D-9 GEOS-3 Spatial Distribution of Altimeter Data,Altimeter Coverage 1976 Days 62 and 63 . . . 90
D-10 GEOS-3 Spatial Distribution of Altimeter Data,Altimeter Coverage 1976 Days 64 and 65 . . . 91
D-11 GEOS 3 Doppler Residuals (backdate from two passes, station 4150 with altimeter track), 1976 Days 62 to 6392
D-12 GEOS-3 Doppler Residuals (update from two passes, station 4150 with altimeter track), 1976 Days 63 to 693

TABLES

1 Navigation Res̄ultes 7
2 Orbit Determination Using Synthetic Data . . . 7
3 Orbit Determination Solutions, 1977 Days 113 and 114 12

4 GEOS-3 C-Band and Laser Navigation Residuals for Doppler Orbit, 1975 Days 115 and 116 . . 15

5 GEOS-3 Orbit Corrections to Doppler Ephemeris, 1975 Days 115 and 11621

6 Station Location Corrections Based on Pass Navigation Solutions Using Doppler Ephemeris, 1975 Days 115 and 116 21

7 GEOS-3 Orbit Determination Tracking Results, 1976 Days 62 to 6524

8 Range Bias, Drift, and Noise Summary by Station, 1976 Days 62 to 65

GEOS-3 Orbit Determination, Update and Backdate, 1976 Days 62 to 65 30

10 GEOS-3 Orbit Determination without Altimeter Data, 1976 Days 62 to 65 (deviations from reference orbit)34

11 Summary of Altimeter Data, 1976 Days 62 to 65 . . 45
12 GEOS-3 Orbit Determination with Altimeter and Other Data, 1976 Days 62 to 65 (deviations from reference orbit) 47

13 GEOS-3 Altimeter Orbit Determination, Altimeter Data Only, 1976 Days 62 to 65 51

C-1 Doppler Pass Navigation Results, 1975 Days 113 and 11467C-2 Orbit Initial Conditions for 1975Days 113 and 114 . . .68
C-3 Doppler Data Navigation Results, 1975 Days 1.15 and 116 69
D-1 GEM-9 Station Coordinates 75
D-2 Initial Conditions for Base Ephemerides 76
D-3 Doppler Navigation Results (base run), Span 1 77
D-4 Doppler Navigation Results (base run), Span 2 78
D-5 C-Band Navigation Results (base run), Span 1 79
D-6 C-Band Navigation Results (base run), Span 2 80
D-7 Laser Navigation Results (base run),Span 1D-8 Laser Navigation Results (base run),Span 281

1.0 OBJECTIVES AND PLAN.OF ATTACK

The purpose of this investigation was to determine the nature and degree of improvement of satellite orbit determination when precise altimeter data are used in combination with conventıonal tracking data.

To achieve these objectives it is desirable to perform both long-arc and short-arc solutions. A long-arc solution requires tracking data over many satellite revolutions and from one or more of the worldwide tracking networks. A short-arc solution requires intensive tracking coverage during a satellite traverse over the geographical region of interest.

The experiment plan was to develop a versatile orbit determination program that could combine the various types of tracking data that would be made available. Inherent in the software are geopotential and geoid models that can be updated easily. It was anticipated that an important ingredient to the success of the study would be the availability of a precise near-worldwide geoid determined from the altimeter data by the other principal investigators.

Exercising the orbit determination software with various combinations of data types would provide differential changes to the orbital solution. The character and magnitudes of these differences for several such intervals would provide a measure of the efficiency of the altimeter data,

2.0 DATA LIMITATIONS ON THE SCOPE OF THE EXPERIMENT

Because of limitations on the density and distribution of the tracking data that were available, it was necessary to modify the scope of the experiment. Intensive tracking data from several sites in the same geographical region together with altimeter data were not available. Consequently, it was not possible to perform the short-arc studies that had been planned. The sparsity of the altimeter and laser data increased the minimum possible meaningful data span to two days. Only long-arc solutions could be performed.

An improved geopotential model, GEM-9, was obtained during the course of the investigation. Since this model incorporated GEOS-3 data, it provided a substantial improvement to the orbit determination solution. Unfortunately, the fine-structured nearworldwide geoid model that had been anticipated from the other investigators was never obtained. It was necessary to use the GEM-9 geoid for our final studies.

3.0 COMPUTER SOFTWARE

A complex of computer programs was developed to achieve the goals of the GEOS-3 orbit determination experiment. In this section we describe the software starting with an overall system flow in Section 3.1, followed by a description of station navigation as a data editing tool in Section 3.2. A brief description of the individual modules can be found in Appendix A.

3.1 SYSTEM FLOW

Figure 1 is a system flowchart for the GEOS-3 orbit determination software. Starting with a set of initial conditions for the satellite, the ephemeris generation module produces a table of satellite posations as a function of time (the ephemerıs file). Each data type has a FORMATOR/SIFTOR that performs initial data editing and data compression when desired. The sifted data are processed by separate EDITOR/PEF (Post-EDITOR Fit) modules that also access the ephemeris and station properties files. These modules perform a dual function:

1. Data edıting via pass navigation (except for altımeter) and
2. Computation of orbit partials and residuals and the setup of the normal matrices and right-hand side (R.H.S.) vectors.

The SOLVOR combines the separate normal matrices and their R.H.S. vectors, applying appropriate pass weights. The combined matrix is then solved, and the state vector (Initial conditions) is "corrected." The process is iterated until the corrections to the state vector fall below prescribed thresholds. The navigation results from the EDITOR/PEF processors can be used to "improve" the station positions (not shown in Fig. 1).

3.2 NAVIGATION IN THE EDITOR

Station navigation is a scheme that determines the station position and auxiliary parameters that best fit the data. The navigation is performed in two spatial dimensions: one parallel to the satellite subtrack, and the other from the station to the position of the satellate when it is at minimum range relative to the station. :These two components are called the along-track error, ECA, and the slant-range error, ECR, respectively. The auxiliary parameters that are determined are:

Fig 1 System Flowchart

1. For doppler data, the frequency difference between the spacecraft and station oscillator;
2. For laser data, a range bias and a range-rate bias; and
3. For c-band data, a range bias and a range-rate bias. (The altimeter EDITOR does not perform the navigation function.)

In using the navigation method to detect "bad data," the following assumptions are made:

1. Data sets (passes) are treated independently of each other and most are unbiased;
2. Geodetic station locations are known to better than potential data biases; and
3. We have a reasonable representation of the position of the satellite (i.e., we have an ephemeris covering the data span in question).

Given the above assumptions, we proceed to determine the position of the station associated with a given pass. When we compare the navigated station position with the known station location, we discover errors that reflect (a) orbital inaccuracies, (b) bad geodetic station location, or (c) bad data. Of the three, (b) can be eliminated since we generally navigate passes whose station coordinates have been well established. We usually have at least a gross measure of the expected orbit errors, which allows us to judge a pass as "good" or "bad" by examining the resulting navigated position errors and the post-navigation measurement residuals.

Navigating in the minimumslant-range (MSR) coordinate system starts with the determination of the time of closest approach (tca) and the establishment of an orthogonal coordinate system (MSR system) at tca (defined in Appendix B). Next the pass is navigated (i.e., its MSR coordinates are "moved") in the along-track and slant-range directions. Noisy points are detected during each navigation iteration and are excluded from the least-squares fit. Points whose elevation is below a given threshold are similarly excluded. The result of navigation is a set of station coordinate corrections to the nominal station position.

4.0 ORBIT DETERMINATION USING. SYNTHETIC DATA

To check out the orbit determination software, synthetic (noise-free) data were generated using a nominal GEOS-3 ephemeris and a set of four stations. The four stations (311 Maine, 321 Minnesota, 332 California, and 340 Hawaii) were used to generate doppler (range difference) and laser (range) data (altimeter data require no earth-based station).

A second ephemeris (the "error" ephemeris) was produced with errors introduced in the initial conditions. The data were processed "against" the error ephemeris. The resulting corrections, when compared to the known errors, become a good measure of the maximum capability of each processor. For doppler and laser data we have the additional comparison of individual pass navigation results.

The following errors were introduced into the initial conditions of the error ephemeris:

$$
\begin{aligned}
& \text { Semimajor axis - } \delta a=1 \times 10^{-7} \mathrm{R}_{0}(0.64 \mathrm{~m}), \\
& \text { Eccentricity - } \delta e=1 \times 10^{-6}, \\
& \text { Inclination - } \delta i=1 \times 10^{-6} \mathrm{rad}, \\
& \text { Nöde }-\delta \Omega=1 \times 10^{-6} \mathrm{rad}, \\
& \text { Perigee }-\delta \omega=1 \times 10^{-6} \mathrm{rad}, \text { and } \\
& \text { Mean anomaly - } \delta \mathrm{M}=1 \times 10^{-6} \mathrm{rad} .
\end{aligned}
$$

Table 1 compares the navigation results for doppler and laser data. The differences are about 10 cm , which seems quite reasonable. Table' 2 summarizes the results of using the various data types in orbit determination. Note that the doppler and laser corrections would remove 99% of the total error in a single iteration. The second laser case where the data were corrected for range bias and range-rate bias (using the fitted results out of the navigation process) did not do well. A second iteration reduced the errors further but still left 40% in $e, 11 \%$ in $i, 13 \%$ in Ω, and 20% 'in $\mathrm{M}+\omega$. Clearly, it is difficult to separate ephemeris errors from legitimate range and range-rate biases. We did not use this mode with the real C -band and laser data and chose instead to use large fitted biases as indicators of possibly bad data. Such passes were excluded from the orbit determination process. We did, in fact, find what looked like legitimate biases in two C-band sites (see Table 8). The altimeter case fully recovered the semimajor axis (δa)

Table 1
Navigation Results

*ECA - error along orbit
ECR - error in slant range
ECF - frequency bias

Table 2
Orbit Determination Usıng Synthetic Data

	Ephemeris Infitial Condition Errors	Fitted Corrections (fırst iteration)				
		Doppler	Laser	Laser*	Altameter	$\begin{aligned} & \text { Combined } \\ & \text { DOP+LSR+ALT } \end{aligned}$
סa (m)	0638	0638	0637	0660	0612	0631
$\mathrm{R}_{0} \mathrm{de}$ (m)	638	640	632	10.53	633	629
$\mathrm{R}_{0} \mathrm{if}$ (m)	638	638	636	651	129	660
$\mathrm{R}_{0} \delta \Omega(\mathrm{~m})$	638	636	642	765	149	577
$\mathrm{R}_{0}(\delta \omega+\delta M)(m)$	1276	1280	1274	863	436	1234
$R_{0}=6378166 \mathrm{~km}$						

* Data corrected for bias and drift computed by the navigation process
and eccentricity (δ e) errors but only 20% of the inclination (δi), 23% of the node ($\delta \Omega$), and 34% of the along-track ($\delta \omega+\delta \mathrm{M}$) exrors. Finally, the combined solution (doppler + laser + altimeter) fully recovered the ephemeris errors in a single iteration. The altimeter case confirmed our intuition that orbit determination with real (noisy) altimeter data is not likely to be well-conditioned and that some other data (doppler or laser) would be necessary to determine the node, inclination, and perigee.

5.0 PRELIMINARY ORBIT DETERMINATION RESULTS

5.1 INTRODUCTION

In support of the long-arc orbit determination objectives, two preliminary studies were undertaken soon after the altimeter data became available. 'The purpose of these investigations was primarily to evaluate the integrity of the software that had been developed and to obtain experience in processing the altimetry data. Two intervals, each of a two-day duration, were selected on the basis of providing the maximum amount of tracking data. Because of our long experience in determining satellite ephemerides with doppler data, only doppler and altimeter data were processed for the first interval. Over the second interval, doppler, C-band, laser, and altimeter data were processed. Each of these studies will be discussed in turn.

5.2 ORBIT DETERMINATION, 1975 DAYS 113 to 114

When the first effort was undertaken only a limited amount of altimeter data was available. During day numbers 113 and 114 in 1975, there were four segments of altimeter data available. This is the interval with the second highest density of altimeter data. The interval with the highest density was reserved for the study discussed next. Because of our intimate acquaintance with the characteristics of doppler data in orbit determination, the first experiment was limited to studying the properties of combining doppler and altimeter data. In addition, this made it posw sible to use station coordinates that had been determined here previously and that are consistent with the in-house geopotential and geoid models used in the orbit determination procedure. Since dense doppler data were available consistently, their distribution posed no constraints on selecting the tracking intervals.

A total of 66 passes of doppler data were used from 10 tracking sites. From these data, a "base" ephemeris was determined for the two-day interval. The rms of the navigation solutions* for the 57 doppler passes that survived the editing processor is 25.9 m in the along-track direction and 14.7 m in the slantrange direction. These combine to give an rms total error of 29.8 m . The navigation solution residuals are given as a function of time in Fig. 2 and are listed in Table C-1 in Appendix C. The initial conditions for the orbit are given in Table C-2.

The navigation solution residuals are about a factor of two larger than what was anticipated and are correlated with time.

[^0]

Fig. 2 GEOS-3 Pass Navigation Residuals, Doppler Data, 1975 Days 113 and 114

This appeared to be most likely due to the resonance of the GEOS-3 orbit with the 14 th-order harmonic geopotential. To explore the possibility, adjustments were made to the coefficients of the $(2,1),(3,1),(15,14)$, and $(15,15)$ harmonics. By this means, it was possible to reduce the navigation solution residuals to 18 m in the along-track direction and 13 m in the slant-range direction, which combine to a total rms error of 22.2 m . This demonstrated the need for mproved geopotential and geoid models for the subsequent studies.

The temporal distribution of the four segments of altimeter data is shown in Fig. 2 with the spatial distribution shown in Fig. C-1.

In using the altimeter data for orbit determination, the doppler-determined ephemeris was used as the base or "true" ephemeris. A comparison was made of the altimeter-measured geoidal heights, and those geoidal heights were determined from the base ephemeris. The rms for all the altimeter data was 20.17 m . The geoid used in the computation was determined from the in-house geopotential model used in obtaining the ephemeris to establish overall consistency.

Next, altimeter data alone were used to compute changes to the doppler-determined ephemeris. Because of the limited geographical extent of the altimeter data, only changes to the semimajor axis, the eccentricity, and an altimeter bias were determined. The other Kepler parameters were constrained to the doppler solution. The results of the orbit determination solution are given in Table 3 where a conversion to distance has been made for each orbit element to allow for easier comparison. Even with the limited amount of altimeter data, it was possible to recover reasonable values for the solved parameters.

To study the procedure of combining altimeter and doppler data, five combined solutions were obtained with different relative weights for the altimeter and doppler data. The results are given in Table 3. The combined solutions are close to the doppler solution principally because the doppler consists of 57 passes of data while the altimeter provided only 4 passes of data.

Table 3
Orbit Determination Solutions, 1977 Days 113 and 114

Changes to Kepler Initıal Conditions from Entry in Table C 2							
Data Type	$\begin{gathered} \text { Relative Weight* } \\ \frac{\sigma^{-2} \text { altimeter }}{\sigma^{-2}} \\ \text { doppler } \end{gathered}$	§a (m)	$\begin{aligned} & \mathrm{R}_{0} \delta \mathrm{e} \\ & (\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathrm{R}_{0} \delta 1 \\ & (\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathrm{R}_{0} \delta \Omega \\ & (\mathrm{~m}) \end{aligned}$	$\begin{gathered} R_{0}(\delta \omega+\delta M) \\ (\mathrm{m}) \end{gathered}$	$\begin{aligned} & \text { Altimeter } \\ & \text { Bras } \\ & \text { (m) } \end{aligned}$
Altimeter	0	6.12	-27.2	---	---	---	-12
er	11	-0 02	1.12	-0.08	-3.19	-0.25	16.8
Doppler	0.8	-0.01	1.21	-0.21	-290	231	164
	06	-0.01	-3.86	-0.344	-2 63	4.82	154
	0.4	-0 01	-7.48	-0.63	-2.45	706	129
	0.3	-0 02	-10.29	-1 26	-2.51	762	9.7

* These relative weights are on a per pass basis.

5.3 ORBIT DETERMINATION, 1975 DAYS 115 to 116

During the two-day interval of days 115 and 116,56 passes of doppler data, 21 passes of C-band ranging data, 5 passes of laser ranging data, and 8 passes of altimeter height data were available.

To obtain a base ephemerıs, the doppler data were processed first. The doppler passes that were used originated at 12 trackIng sites (see Fig. C-2 for the distrıbution of these sites). Of the 56 passes, 47 survived the process of orbit determination. Seven passes were deweighted because of excessive noise or lowelevation angles (i.e., maximum elevation is below 5°) and two were deleted because of unusually large navigation residuals (see Table C-3 for individual station navigation results). A time history of the navigation residuals for the 47 good passes is given in Fig. 3 where the rms is 12.5 m along track and 7.6 m slant range. That these residuals are a factor of two less than for the comparable doppler-determined ephemeris discussed in Section 5,2 for days 113 and 114 is due to the use of the GEM-8 geopotential model that had become available (Ref. 1). Since this model was based partially on tracking data from GEOS-3, it was judged to be the best available. Station coordinates for the doppler sites were not readjusted at this time.

The 21 passes of C-band ranging data were from seven sites and the five passes of laser data from three sites (see Fig. C-3 for the geographical distribution of these sites).

To obtain a measure of quality of the C-band and laser data, each pass of data was navigated using the doppler-determined ephemeris. The navigation solution for the ranging data consisted of determining a station position error in the along-track and slant-range directions together with a range bias and range-rate bias. The station positions used were those supplied with the data. These navigation results are given in Table 4. The large range and range-rate biases for some of the C-band data were unexpected. Figure 4 shows the range residuals before and after navigation for a pass of C-band data for which the range and range-rate biases were large. Even after navigation, the residuals remain correlated. Figure 5 shows analogous results for a pass of C -band data for which the range and range-rate biases were small. No evidence of correlation in the measurement residuals over the data span is seen. By deleting six of the 21 C-band passes that had large range and/or range-rate biases, it was possible to reduce the navigation residuals significantly as shown in Fig. 6.

Ref. I. J. Marsh, private communication, 1976.

Fig 3 GEOS-3 Doppler Navigation Restduals, 1975 Days 115 and 116

Table 4
GEOS-3 C-Band and Laser Navigation Residuals for Doppler Orbit, 1975 Days 115 and 116

Pass I D				Navigation Results					
Yr	Day	Rise H Min	Sta	Along Track (m)	Slant Range (m)	$\begin{gathered} \text { Range } \\ \text { Bias (m) } \end{gathered}$	$\begin{gathered} \text { Range-Rate } \\ \text { Bias } \\ (\mathrm{m} / \mathrm{ks}) \end{gathered}$	Residual (m)	Data Type CBD $=$ C-Band Range LSR = Laser Range
75	115	0112	4610	- 195	-872	456	- 506	0807	CBD
75	115	0308	4281	650	-41 21	42714	-181 92	2.701	CBD*
75	115	0729	4760	1078	- 802	246	201	0862	CBD
75	115	0733	4840	1288	-1086	283	5.11	1341	CBD
75	115	0912	4840	231	247	471	- -56	1413	CBD
75	115	0912	7068	275	6.62	366	093	0074	LSR
75	115	0918	7063	- 713	367	0.34	3052	0.102	LSR
75	115	1236	4260	1280	2196	-0 13	2662	1480	CBD*
75	115	2136	4840	- 790	-699	-313	165	2.268	CBD*
75	115	2135	4760	841	- 315	-0 37	- 1.66	0800	CBD
75	115	2143	7068	410	657	087	0.07	0051	LSE
75	115	2315	4760	3415	1063	031	052	0964	CBD
75	115	2314	4840	2518	1216	-2.58	150	1343	CBD
75	116	0058	4610	736	-16 63	2.26	- 314	0.869	CBD
75	116	0254	4281	1773	-57.51	3686	1104	1917	CBD*
75	116	0424	4282	14004	-698	4257	1850	2795	CBD*
75	116	0432	4281	331	- 8.46	2594	1687	2194	CBD*
75	116	0716	4760	1141	- 514	-071	119	0940	CBD
75	116	0719	4860	1283	- 510	-1 99	244	0950	CBD
75	116	0854	4760	- 664	1451	575	088	0.787	CBD
75	116	0858	4860	- 519	748	108	528	0872	CBD
75	116	0859	7068	- 178	1109	071	1095	0.065	LSR
75	116	2300	4760	1553	505	127	-463	0997	CBD
75	116	2300	4860	663	103	105	-290	0818	CBD
75	116	2304	7063	733	- 502	180	-458	0246	LSR

* Passes deleted in subsequent orbit determination

	Station	Catalog
	C-Band	Laser
4260	Pillar Point	7063 Greenbelt, MD
4281	Canton Island	7068 Grand Turk, BWI
4282	Kaena Pt, HA	
4610	Ely, NV	
4760	Bermuda	
4840	Wallops Island, VA	
4860	Wallops Island, VA	

Fig 4 GEOS-3 C-Band Range Residuals, Large Bias and Drift, Statıon 4282

Fig 5 GEOS-3 C-Band Range Residuals, Small Bias and Drift, Station 4760

Fig 6 GEOS-3 C-Band and Laser Navigation Residuals for Doppler Orbit, 1975 Days 114 and 115

The five passes of laser ranging data that were available are from the three sites (see Fig. C-3 for the geographical distrabution of these sites). Pass navigation solutions based on the doppler-determined ephemeris are given in Table 4. None of the laser data showed the large range and range-rate biases determined for some of the C-band ranging data. The mean along-track and slant-range residuals are 5.1 m and 7.1 m , respectively. The navigation solutions as a function of time are given in Fig. 6.

The altimetry helght data for this span represent a signzfleant improvement in both the amount and distribution of data over what were avanlable for the study discussed in Section 5.2 (see Fig. C-4). Smoothing of the data to a data point every 20 s was used to reduce the required processing tame. To examine the quality of the altimeter data, the differences between the smoothed observations and calculated height based on the doppler ephemeris and the GEM-8 geopotential model were determined. These residuals and the geoidal heights for each pass are given in Fig. 7. The character of the residuals over each pass as anticipated is structured. A negative bias of about 6 m is present with an rms of 7 m .

Now that the qualities and characteristics of the C-band, laser, and altimeter data had been studied, the next objective was to use the different types of data in determining ephemerides over the span of interest. Corrections to the doppler-determined ephemeris for the various data types are given in Table 5 where the changes to the Kepler elements have been transformed to distances for ease of comparison.

The laser data, although totaling only five passes, produced an ephemeris comparable to the doppler ephemeris. This is expected since our past experience has shown that, for satellites with orbital altitudes comparable to GEOS-3, data from as few as one doppler site can be used to provide an ephemeris that differs by only a few meters from one determined for data from tens of sites.

The differences obtanned with the C-band data were as anticipated, i.e., at the approximately two-per-meter level, except for the orblt node. The reason for this is that there is a blas in the average longitude of the C-band stations relative to the doppler sites. Thas is seen in the mean station position corrections obtained from the navigation solutions using the dop-pler-determined ephemeris (see Table 6). The mean longitude bias for the four C-band sites weighed by the number of passes was -17.5 m ; this is close to the $-17.3-\mathrm{m}$ change in the longitude of the ascending node given in Table 5. This demonstrated that a consistent set of station coordinates should be determined for the final studies.

Fig. 7 GEOS-3 Altımeter Heıght Resıduals for Doppler Orbit, 1975 Days 115 and 116

Table 5
GEOS-3 Orbit Corrections to Doppler Ephemeris, 1975 Days 115 and 116

Data Type	Laser Range	C-Band Range	Doppler and Altimeter*	, Altimeter
$\delta \mathrm{a}$ (m)	0.0658	-0.0041	0.0328	-10.5
$\mathrm{R}_{0} \mathrm{Se}$ (m)	-5.7594	3.2911	-1.4861	-4.1075
$\mathrm{R}_{0} \delta i(\mathrm{~m})$	58306	-4.0455	0.2681	152×10^{3}
$\mathrm{R}_{0} \delta \Omega$ (m)	-3.7315	-17.2832**	0.3039	65.6×10^{3}
$\mathrm{R}_{0}(\delta \omega+\delta \mathrm{M})(\mathrm{m})$	12721	-3.280	2.5670	-1.6×10^{3}
$\Delta \mathrm{f}$ ($\mathrm{Hz} / \mathrm{MHz}$)	-	-	-0.013694	-
A priori Residual (m)	8.7	16.9	$\begin{aligned} & 15 \text { (doppler), } \\ & 7 \text { (alt.) } \end{aligned}$	7
Altatude Bias (m)	-	-	7.731	-
Number of Passes of Data	5	14	$56+8$	8

$\mathrm{R}_{0} \equiv 6.378166 \times 10^{6} \mathrm{~m}$

* Altimeter fit constrained to a, e, and bias
** Due to bias in longitude of C-band network
Table 6
Station Location Corrections Based on Pass Navigation Solutions Using Doppler Ephemerıs, 1975 Days 115 and 116

Station	Number of Passes	Delta Latitude(m)	Delta Longitude(m)	De1ta Radius (m)	Noise (m)	Data Type*
4610	2	+9.3	-13.8	-6.8	-	
4760	6	-6.9	-209	-0.4	0.9	CBD
4840	3	-4.7	-201	-1.1	14	CBD
4860	3	-2.6	-10.6	1.3	0.9	CBD
AI1 C-Band	14	-3.2	-17.5	-1.1	-2	CBD
7068	3	-3.2	-9.8	1.3	0.06	LSR

[^1]An attempt was made to determine an ephemeris based solely on altimeter data. Simulation studies had shown that the semimajor axis, eccentricity, and altimeter bias were the betterconditioned parameters for an orbit with the characteristics of GEOS=3. Nevertheless, to judge the efficacy of using altimeter data alone, all six orbital parameters for an altimeter height bias were determined solely from the eight passes of altimeter data. Seven of the eight passes are over the same portion of the orbit and are all from the same geographic region (see Fig. C-4). Both of the characteristics suggest that conditioning of the solution should be a problem.

As anticipated, the semimajor axis and eccentriclty agree to about the $10-\mathrm{m}$ level with the solutions based on the other data types. The position of the spacecraft along track is specified to about 1.6 km , and the inclination error is about the same. As expected, the right ascension of the ascending node is the poorest determined quantity with an error of about 65.6 km .

6.0 ORBIT DETERMINATION WITH GEM-9 GEODESY USING 1976 DATA

In the last of the sets of orbit determination experiments, we used a four-day span in 1976 (days 62 to 65). The criterion for choosing these partıcular days was to maximize the available altimeter and laser data, particularly the former. The other two data types (doppler and C band) were plentiful and provided good worldwide coverage (see Table D-1 in Appendix D for station locations).

The experımental objectives were threefold:

1. To establish a set of two reference or base ephemerades,
2. To assess the effects of progressively reducing nonaltimeter data-type coverage on the ephemerides accuracy, and
3. To assess the value of altimeter data in orbit determination starting with altimeter only and progressively adding nonaltimeter data to improve the resulting ephemerides.

In general, we wall assume that the base or reference ephemerides most accurately reproduce the true position of the satellite during the four days in question. Deviation from the true position can therefore be considered to be a "worse" or less accurate reproduction of the true orbital path of the satellite.

6.1 THE BASE OR REFERENCE EPHEMERIDES

Days 62 to 65 were dıvided into two spans of two days each. For Span 1 (days 62 to 63), we started with 86 doppler passes, 64 C-band passes, 11 laser passes, and 15 altimeter passes. For Span 2 (days 64 to 65), we started with 75 doppler passes, 73 C-band passes, 12 laser passes, and 21 altimeter passes. Using GEM-9 geodesy (Ref. 2) ($G M=398600.640 \mathrm{~km} / \mathrm{s}^{2}$) and nominal (not GEM-9) station coordinates, we proceeded in an 2terative fashion to obtain two ephemerides and a new set of station coordinates that best fit the data. The best initial conditions can be found in Table D-2. The summary of the navigation results is presented in the first and suxth line entries of Table 7. Note that several

Ref. 2. F. J. Lerch, S. M. Klosko, R. E. Laubscher, and C. A. Wagner, "Gravity Model Improvement Using GEOS-3 (GEM 9 and 10)," GSFC X-921-77-246, September 1977.

Table 7
GEOS-3 Orbıt Determınation Trackıng Results, 1976 Days 62 to 65

	Span	Mavigation Resulte (p)												Ephemeris Doviation (rom Reference Ephemaria (${ }^{(0)}$				$\begin{gathered} \text { Deta } \\ \text { Descriptiou } \end{gathered}$
		Dopplar (DOP)				C-basd (CBD)				Laser (LSR)								
		Pagses	Ecr	ecr	ECT	pasces	eca	ECR	yct	$\stackrel{\text { Panses }}{\text { No }}$	ECA	ECR	ECT	日	2	c	D	
1		66	-0 3+4 6	-04 4 ± 2	57	43	$-0{ }_{\underline{5}+3} 7$	0 ± 28	47	9	04 ± 26	-14 414	33					(DOP, $^{\text {CSD, LSR, ALT) }}$
2	62	66	-0 344 6	-04 ± 32	57	43	-0 5ty 7	0 ± 28	47	9	04 ± 26	-14414	33	0	0	0	0	(DOP CBD LSR)
3	63						-0 5+29	05 ± 15	33	-				0409	30 ± 19	0 ± 25	44	Sce 4150 (CBD) Same reaulte obentred with or without ALT
4	1976						24403	-0 $2+09$						02 ± 144	$-578+393$	194456.8	4624	Sta 4150 (CBD) 2 south pagaes
5							01 ± 01	07 ± 12						0 ± 13	54 ± 38	0 ± 63	92	Sta 4150 (CBD) 2 south pasest and ALT data
6		64	$03+62$	04 ± 41	75	60.	099	-0 3 ± 45	75		-0 $9+28$	02 ± 25	39					($\mathrm{DOP}+\mathrm{CBD}+\mathrm{LSR}+\mathrm{ALT}$)
7	64													0	0	0	0	($\mathrm{DOP}+\mathrm{CBD}+\mathrm{LSR}$)
8	65						04 ± 20	12 ± 2	32					0 ± 05	-0 7 726	-01 ± 32	42	Ste 4150 (CBD) Same reaults obtalned with or without ALI
9	1976						12 ± 24	24 ± 20						$22+226$	$642+1286$	-10 $6+6747$	6903	Sta 4250 (CRD) 2 souch paszes
10							17 ± 32	0 $9+25$						0 ± 16	46 ± 32	-02+97		Sta 4150 (CBD) 2 south panere and ALT data
$\begin{aligned} & \text { ECA - along-track error } \\ & \text { ECR - alant-rmage error } \\ & \text { ECT - total gavigation error } \\ & \text { H = radial error } \\ & \text { L - along-track error } \\ & \text { C - erota-track error } \\ & \text { D - total ezror } \end{aligned}$									1					* *				
				*														

input passes were deleted in arrıving at the final solution. For Span 1, there were 66 doppler, 43 C-band, 9 laser, and 15 altimeter surviving passes. For Span 2, there were 64 doppler, 60 C-band, 11 laser, and 21 altimeter surviving passes. The large casualty rate is a result of the rigorous data editing. The resulting navigation residuals were 6 to 8 m for doppler, 5 to 8 m for C band, and 4 m for laser. The altimeter residuals were 6 to 7 m , which include a large altimeter bias (discussed later). Removing the bias (5.4 m) reduces the altimeter residuals to 2 to 3 m (see Table 8). The fitted GEM-9 station coordinates can be found in Table D-1. Figures 8 and 9 are plots of navigation residuals for the three data types combined for Spans 1 and 2, respectively. Additional figures and tables of individual pass residuals are in Appendix D. Altimeter data results are dealt with separately in another section of this report.

Table 8 summarizes the C-band and laser results by station. We note a number of interesting features in this table:

1. The post-navigation (range) residuals (σ) of the laser sites are about 4 to 7 cm compared to 1 to 2.5 m for the C -band sites; and
2. There are large range biases and drifts for C-band stations 4958 and 4959, as well as non-negligible biases for many of the other stations.

Range bias, drift, and post-navigation residuals were used in the orbit determination process as a measure of data (pass) quality for C-band and laser data. For doppler data, maximum pass elevation above the horizon and post-navigation residuals were used as a measure of data (pass) quality. All the passes from station 4958 and 4959 were excluded from the orbit determination process, and many doppler passes were excluded as a result of the lowelevation criteria (see Tables $D-3$ to $D-8$).

6.1.1 Orbit Extrapolation from Reference Runs

In the previous section we discussed the reference runs in terms of how close the resulting ephemerides agree with the collected experimental data. In this section we will assess the quality of the extrapolated or predicted ephemerides. Theoretically, if we were able to precisely model all the forces acting on a satellite as a function of time, then once we establish a set of inntial conditions using all the available data we should be able to extrapolate the resulting reference ephemeris anto either future (update) or past (backdate). However, in really the force models are only an approximation of the real forces, and so one expects

Table 8
Range Bias，Drift，and Noise Summary by Station， 1976 Days 62 to 65

Station	Type	No．of Passes	Summary Results		
			〈Bias〉（m）	〈Drift〉（km／day）	$\langle\sigma\rangle(\mathrm{m})$
4013		1	22.98	1.56	1.86
4150		13	－ 0.50 ± 2.00	0.14 ± 0.73	2.00 ± 0.33
4198		10	－ 4.35 ± 1.52	0.06 ± 0.47	1.31 ± 0.19
4280		5	2.57 ± 2.70	-0.30 ± 1.44	1.14 ± 0.07
4446	c	7	－ 1.49 ± 2.80	0.47 ± 0.77	1.61 ± 0.57
4860		11	－ 7.69 ± 2.76	-0.15 ± 0.55	1.64 ± 0.29
4610	b	11	－ 1.48 ± 1.23	-0.28 ± 1.55	1.03 ± 0.20
4742	n	10	－ 6.07 ± 3.45	-0.01 ± 0.31	0.94 ± 0.44
4760	d	15	-2.89 ± 1.35	0.02 ± 0.32	0.90 ± 0.09
4840		8	-3.63 ± 1.25	0.94 ± 0.46	1.63 ± 0.06
4860		6	-12.36 ± 6.50	-4.43 ± 4.42	2.48 ± 0.89
4958		6	-377.50 ± 12.91	13.95 ± 2.04	2.16 ± 0.32
4959		7	392.58 ± 10.66	14.23 ± 1.74	2.47 ± 0.51
4960		26	3.40 ± 4.56	-0.13 ± 1.47	1.73 ± 0.40
7067	L	9	－ 2.44 ± 3.83	-0.97 ± 4.24	0.05 ± 0.006
7068	s	5	－ 0.09 ± 2.07	0.94 ± 2.53	0.04 ± 0.003
7069	$\begin{aligned} & e \\ & r \end{aligned}$	8	-1.08 ± 0.68	0.09 ± 0.20	0.07 ± 0.006

1
N
1

Fig 8 GEOS-3 Combined Navigation Residuals-Reference Track, 1976 Days 62 to 63

Fig. 9 GEOS-3 Combined Navigation Resıduals Reference Track, 1976 Days 64 to 65
a degradation in the precisions of extrapolated ephemerides. Even If the models were perfect (which they are not), we stall have to contend wath noisy data. One would expect, under such conditions, that it would be advantageous to have as much data as possible, well distributed in time and space. This, in fact, has been our criterion for establishing the GEOS-3 reference ephemerides. By using four independent data types and as much data as were available, we achieved the desired goal of good data coverage in both space and time. As it turns out, it is not noisy data but rather the imperfect force models that limat our ability to extrapolate far into the future (or past).

Each of our two reference ephemerndes were extrapolated, and each extrapolated ephemeris was compared with its tracked counterpart as follows:

1. Span 1 (days 62 to 63) was extrapolated into the future (updated) to cover days 64 to 65, and
2. Span 2 (days 64 to 65) was extrapolated into the past (backdated) to cover days 62 to 63.

Before confusion sets in, let us define the four ephemerides in question:

1. Reference 1: 1976 days 62 to 63 (tracked),
2. Reference 2: 1976 days 64 to 65 (tracked),
3. Update: 1976 days 64 to 65 (extrapolated from Reference 1), and
4. Backdate: 1976 days 62 to 63 (extrapolated from Reference 2).

The comparison for Span 1 is therefore between Reference 1 and backdate and for Span 2 between Reference 2 and update. Table 9, lines 1 and 6, presents the results of this comparison. Two sets of results are presented:

1. Direct differencing of the ephemerides in question ($\mathrm{H}, \mathrm{L}, \mathrm{C}, \mathrm{D}$), and
2. Navigation of real (doppler) data against the extrapolated ephemeris.

In the latter case, the results (ECA, ECR, ECT) are a measure of how much the stations had to be moved in order to compensate for the satellite errors. Comparing Tables 9 and 7 (tracked versus

Table 9
GEOOS-3 Orbıt Determınatıon, Update and Backdate, 1976 Days 62 to 65

Span		$\begin{aligned} & \text { Navigation Resuits (m) } \\ & \text { (DOP) } \end{aligned}$				Ephemeris Deviation from Reference (m)				- Description
		No, of Passes	ECA	ECR	ECT	H	L	C	D	
\#\#\#0m	62	66	-0 6+6 3	$-0.9+4.1$	7.6	0 ± 2.1	-1.2 ± 4.6	0 ± 0.5	5.2	$\mathrm{DOP}+{ }^{+} \mathrm{CBD}+\mathrm{LSR}+\mathrm{ALT}$
		66	-0 6+6 3	-0.9+4.1	7.6	0 ± 2.1	$-1.2+4.6$	0 ± 0.5	5.2	DOP + CBD $-\mathrm{LSR}^{*}$
		66	- 7.0 ± 6.9	-1 6+4.3	10.8	01 ± 1.7	-10.1 ± 5.4	$-2.2+3.2$	120	Sta 4150 (CBD) Same results with or without ALT
		66	-347 7+182.1	-218.4 ± 4035	6038					Sta 4150° (CBD) 2 south passes
		66	$-3.5+6.7$	-3.9 ± 7.9	116	0 ± 2.4	38 ± 51	-0.1 ± 10.3	124	Sta 4150 (CBD + ALT) 2 south passes of CBD
	64	64	$6.9+8 \mathrm{I}$	08 ± 4.9	11.7	0 ± 2.1	-6 3+5.0	0 ± 0.4	8.3	DOP + CBD + LSR + ALT
	65	64	6.9 ± 8.1	08 ± 4.9	11.7	0 ± 2.1	$-6.3+5.0$	0 ± 0.4	8.3	$D O P+C B D+L S R$
	1976	64	3.6 ± 8.9	-0 $1+5.4$	11.1	0 ± 2.7	-2.0+5.7	0 ± 2.5	7.1	Sta 4150 (CBD) Same results with or without ALT
		64	108.8 ± 88.1	163.5$\ddagger 255.3$	339.9					Sta 41.50 (CBD) 2 south passes
		64	11.5 ± 9.3	$-1.3+6.2$	16.1	01 ± 2.0	-107 ± 6.7	0 ± 6.1	14.2	$\begin{aligned} & \text { Sta } 4150(C B D+A L T) \\ & 2 \text { south passes of CBD } \end{aligned}$

[^2]extrapolated) we find a degradation of 2 m in the rms of $\operatorname{Span} 1$ (5.7 to 7.6 m) and a degradation of 4 m for $\operatorname{Span} 2$ (7.5 to 11.7 m). We wall return to these two tables in other sections of this report.

Figures 10 and 11 present the doppler navigation results (backdate and update). Plots of the actual ephemeris differences ($\mathrm{H}, \mathrm{L}, \mathrm{C}$ backdate and update) can be found in Figs. $\mathrm{D}-7$ and $\mathrm{D}-8$.

62 ORBIT DETERMINATION WITHOUT ALTIMETER DATA

Having established the two reference ephemerides, we now look at the effects of reducing data coverage. In this section we will deal with nonaltimeter data. We will introduce altimeter data in the next section of the report.

It is of no surprise to anyone that using a great deal of data from many tracking sites in conjunction with good force models results in high-precision ephemerides. We have demonstrated this in the previous section. The questions we would like to discuss here are: What happens when we have only limited data (possibly from a single tracking site)? How closely will the resulting ephemeris approximate the true (reference) satellite ephemeris? We will answer these questions by progressively reducing the data coverage for GEOS-3 from maximum (all) down to two passes from a single site as follows:
A. All data (doppler, C band, laser) (ALL).
B. All data from a single C-band site (SCB).
C. All data from a single doppler site (SDP).
D. Two passes from a single C-band site (2CB).
E. Two passes from a single laser site (2LR).

The five cases are summarized in Table 10, which presents the computed "corrections" to the inltial conditions of the reference orbits. The larger the correction to the reference Kepler elements, the greater the expected deviation of the resulting ephemerides from their reference counterparts. We will also refer to Table 7 for the tracking results and Table 8 for the extrapolated results.

> A. All Data (doppler, C band, laser) (ALL)

Removing altimeter data from the reference runs does not affect the solution at all. Lines 2 and 7 in Tables 7 and 9 confirm that the resulting tracked and extrapolated ephemerides are identical.

1
N
1

FIg 10 GEOS-3 Doppler Residuals (backdate from reference track), 1976 Days 62 to 63

Fig. 11 GEOS-3 Doppler Residuals (update from reference track), 1976 Days 64 to 65

Table 10
GEOS-3 Orbit Determination without Altimeter Data, 1976 Days 62 to 65 (deviations from reference orbit)

$\delta \mathrm{a}$ (m)	SCB		SDP		2 CB		2LR	
	SI	S2	SI	S2	SI	S2	S1	S2
	0	0	0	0	-1.3	2.8	-0.4	-0 1
$\mathrm{R}_{0} \delta \mathrm{e}$ (m)	-0.6	-0.6	0.6	2.6	-17.2	19.8	-3.2	-1.9
$\mathrm{R}_{0} \delta 1$ (m)	2.7	3.9	3.5	-0.7	-416.1	667.9	-90.6	-40.4
$\mathrm{R}_{0} \delta \Omega$ (m)	-2.0	-0.8	1.2	-0.8	472.9	-633.4	108.7	-78.6
$\mathrm{R}_{0}(\delta \omega+\delta M)(m)$	1.1	-4.5	-4.8	-1.8	189.8	-33.3	84.5	-0.9
Altimeter Bias (m)								
Altameter Drift (m/day)								
SCB - all passes from a single C-band site (station 4150)								
SDP - all passes from a single doppler site (station 111)								
2CB - two - -band south-going passes (one/day station 4150)								
2LR - two laser south-going passes (one/day station 7067)								
SI - 1976 days 62 to 63								
S2 - 1976 days 64 to 65								
$\mathrm{R}_{0}-6378.166 \mathrm{~km}$								

B. All Data from a Slngle C-Band Site (SCB) .

This is a drastic change from the previous case. We selected a single site (station 4150, Green River, UT) and used all data (two north, three south for Span 1; three north, three south for Span 2*) for the site to determine the orbit of the satellite.

We note first that the largest deviation from the reference ephemeris is 4.5 m in along track ($\delta \omega+\delta \mathrm{M}$) and 4 m mn inclination (column headed SCB in Table 10). The resulting ephemerides are only 4 m (rms) different from their reference counterparts, and the resulting extrapolations are worse for the backdate (12 versus 5 m) and slightly better for the update (7 versus 8 m). These results can be found in lines 3 and 8 of Tables 7 and 9.

C. A11 Data from a Single Doppler Site (SDP)

We selected a doppler site (station 111, Howard County, MD) and used all available data (three north, three south for Span 1; four north, two south for Span $2 *$) to determine the satellite orbit. As with the single C-band site, the maximum deviation from the reference Keplers is under 5 m (column headed SDP in Table 10).

We can conclude from SCB and SDP above that a single tracking site, well maintained and operating three shifts a day, is all that one needs to generate high-precision orbits for satellites in orbits as high as GEOS-3 (830 km).

D. Two Passes from a Single C-Band Site (2CB)

Can we reduce coverage further? For example, would it suffice to have a station operating a regular 8 -h shift? In such an operation, the most likely data obtained would be a single daily pass with the same heading.

We selected such a case by reducing the number of passes from station 4150 to two for each of the two spans. Each pair of passes was separated by 24 h (one pass/day). Each pair was chosen to have the same heading (south), and consequently the orbit is determined with data sampled from only a small part of the satellite orbit. Had we picked one north- and one south-going pass, we would have doubled the portion of the orbit sampled by the data. The resulting corrections to the reference Kepler elements are shown in the column headed 2CB in Table 10. The inclination, node, and along-track positions ($\delta i, \delta \Omega, \delta \omega+\delta M$) are off by hundreds of

* Surviving good passes.
meters from the reference Keplers. The resulting ephemerides deviate from their reference counterparts by hundreds of meters (Table 7, Innes 4 and 9)'0, Likewise, the extrapolated ephemerides are hundreds of meters off from their reference counterparts (Table 9, lines 4 and 9). Figures 12 and 13 are plots of the ephemeris differences. Note that most of the errors are in the out-of-plane components (cross track). It is this case that we hoped would be helped by the introduction of altimeter data (to be dealt with in the next section).

E. Two Passes from a Single Laser Site (2LR)

We selected two passes for each of the two spans for laser site 7067 (Bermuda). The selected passes were south-going for Span 1 and north-going for Span 2, and each pair was separated by 24 h . The results were somewhat surprising. The corrections to the lasergenerated Keplers were much smaller (under 100 m) than for the parallel C-band case (Table 10, column headed 2LR). It is possible that the reason the laser does so much better under these unfavorable conditions is its higher quality (less noise) when compared to C-band. The mean of the post-navigation residuals for the laser site in question was $5 \pm 0.6 \mathrm{~cm}$ compared to the C-band site's $200 \pm 33 \mathrm{~cm}$ (Table 8).

63 ORBIT DETERMINATION WITH ALTIMETER DĂTA

In this section we assess the value of altimeter data in orbit determination. We start with the reference runs where we noted that earlier altimeter data added nothing to the solution other than giving a good estimate of the altimeter range bias and drıft parameters. We will begin with the reference case as it relates to the altimeter results and work down to the case of altimeter data alone as follows:
A. Altimeter + All Other Data (doppler, C-band, laser)

B: Altimeter + All Data from a Single C-Band Site (SCB),
C. Altimeter + All Data from a Single Doppler Site (SDP),
D. Altimeter + Two Passes from a Single C-Band Site (2CB),
E. Altimeter + Two Passes from a Single Laser Site (2LR), and
F. Altimeter Only.

Fig 13 GEOS-3 Ephemeris Differences, Two Passes, Station 4150 (no altimeter)
Track, Reference Track, 1976 Days 64 to 65

A. All Data, Reference Runs

Although altimeter data did not contribute to the establishment of the reference ephemerides, it is against these ephemerides that we can assess the available data. We had 36 altimeter passes: 15 for Span 1 (days 62 to 63) and 21 for Span 2 (days 64 to 65). (Spatial distribution of altimeter data is illustrated in Figs. $\mathrm{D}-9$ and $\mathrm{D}-10$.) Individual pass residuals are plotted in Figs. 14 to 17. Figure 18 summarizes the pass results as a function of time. Table 11 presents the individual pass results. The bulk of the data was in the southern hemisphere. Span 1 has about equal distribution of north- and south-going passes, while Span 2 has predominantly north-going passes.

An altimeter range bias is clearly evident in Figs. 14 to 18. The fitted bias for Span 1 is 6.3 m with a drift of $-0.8 \mathrm{~m} /$ day (5.5 m at the center of the span). The fitted blas for Span 2 is 3.2 m with a drift of $2.04 \mathrm{~m} /$ day (5.24 m at the center of the span).

The mean of the pass residuals over the four days was $-5.4 \pm 2.2 \mathrm{~m}$ (Table 11). The range bias and residuals are related to the altimeter height as follows:

$$
A L T_{B}=-A L T_{R}=H_{E X P}-H_{T H E O}
$$

where $\operatorname{ALT}_{B}=$ altimeter height bias,
$A L T_{R}=$ altimeter height residual,
$\mathrm{H}_{\text {THEO }}=$ theoretical altimeter height, and
$H_{E X P}=$ experimental (data) altimeter heaght.
A negative residual implies that the distance from the satellite to the ocean surface (geoid) is larger than the true distance by an average of 5.4 m . The $2.2-\mathrm{m}$ standard deviation about the mean is a good order-of-magnitude measure of the precision of the GEOS-3 altumetry data. The majority of the passes show little residual structure. A few passes (355 and 373 in Fig. 16, and 407 in Fig. 17) show a definite structure that correlates well with the theoretical geoidal heights. It is interesting to note that the three passes traversed the same geographic areas (Fig. D-10) Just off the west coast of Central and South Africa.

Fig 14 GEOS-3 Altımeter Height Residuals (m) versus Time ($\mathrm{h} . \mathrm{mın}$) for Reference Orbit, 1976 Day 62

Fig 15 GEOS-3 Height Residuals (m) versus Time (h mm) for Reference Orbit, 1976 Day 63

1
A

Geoid height
\ldots Residual altımeter
height

- 1 min

Passes identified by
unique numbers

Fig. 16 GEOS-3 Altimeter Height Residuals (m) versus Time (h. min) for Reference Orbit, 1976 Day 64

-43

Fig. 17 GEOS-3 Altımeter Height Residuals (m) versus Tıme ($\mathrm{h} \mathbf{m ı n}$) for Reference Orbit, 1976 Day 65

Fig. 18 GEOS-3 Altımeter Height Pass Residuals for Reference Orbits, 1976 Days 62 to 65

Table 11
Summary of Altımeter Data, 1976 Days 62 to 65

Pasa I.D		$\begin{gathered} \text { Pass** } \\ \text { Heading } \end{gathered}$	Starting Epoch			$\begin{gathered} \text { Pass } \\ \text { Duration } \\ \text { (min) } \\ \hline \end{gathered}$	Mode	Residual**			
						Standard					
Rev No	Unique No		Yx	Day	H Min			Mean (m)	Dev (m)		
4627	284		S	1976	62		0120	12	Intensfive	-67	43
4629	287	S	1976	62	0455	8	Intensive	-6 6	14		
4630	288	S	1976	62	0643	7	Intensive	-76	1.8		
4633	291	S	1976	62	1129	4	Intensive	-51	28		
		N	1976	62	14.02	6	Intensive	-2 2	17		
4636	301	N	1976	62	1731	2	Intensive	-78	04		
4639	310	N	1976	62	2102	4	Intensive	-38	39		
4639	313	N	1976	62	22.43	2	Intensive	-2 8	08		
4640	315	N	1976	63	0002	1	Intensive	-5 0	13		
4645	325	N	1976	63	0832	5	Intensive	-61	15		
4645	326	N	1976	63	1013	4	Intensive	-64	1.4		
4647	328	N	1976	63	1208	12	Intensive	-4 2	26		
4649	333	N	1976	63	1517	10	Intensive	-5 3	21		
4650	335	S	1976	63	1637	10	Intensive	-5 2	15		
4654	349	S	1976	63	2321	10	Intensive	-49	24		
4657	355	S	1976	64	0421	9	Intensive	-6 3	22		
4660	360	N	1976	64	0958	7	Intensive	-4 4	1.4		
4661	364	N	1976	64	1151	8	Intensive	-3 9	07		
4662	366	N	1976	64	1330	11	Intensive	-1 8	22		
4663	369	N	1976	64	1509	3	Intensive	-2.3	26		
4664	373	N	1976	64	1657	9	Intensive	-5 9	44		
4666	377	N	1976	64	1900	2	Intensive	-2 1	09		
4666	378	S	1976	64	1956	9	Intensive	-75	1.6		
4667	381	S	1976	64	2133	10	Intensive	-6 1	19		
4668	383	N	1976	64	2211	8	Intensive	-1 8	29		
4669	385	N	1976	65	0007	4	Intensive	-5 1	14		
4670	388	N	1976	65	0114	6	Intensive	-30	32		
4672	393	S	1976	65	0549	8	Intensive	-8 3	15		
4673	394	S	1976	65	0746	3	Intensive	-7 5	13		
4674	397	N	1976	65	0941	8	Intensive	-61	14		
4676	401	N	1976	65	1316	10	Intensive	-2 4	20		
4677	403	N	1976	65	1457	5	Intensive	-79	10		
4678	407	N	1976	65	1646	5	Intensive	-70	31		
4679	410	N	1976	65	1805	8	Intensive	-105	20		
4680	412	5	1976	65	1942	9	Intensive	-78	17		
4681	41.3	S	1976	65	2118	10	Intensive	-7 7	12		
Sumary		$\begin{aligned} & 13 \mathrm{~S} \\ & 23 \mathrm{~N} \end{aligned}$	Mean Duration $=3 \mathrm{~min}$				$\begin{aligned} & \text { Mean Residual }=-5 \frac{4+2}{2(\mathrm{~m})} \\ & \text { Mean Bxas }=+54 \pm 2(\mathrm{~m}) \end{aligned}$				

* S - south, N - north
** Residual relative to reference ephemeris
B. Altimeter + All Data from a Single C-Band Site (SCB)

Adding altimeter data did not affect the solution to any great extent. A comparison of Tables 10 and 12 (column headed SCB) shows that the changes from the reference- Keplers are essentially the same. The fitted altimeter bias and drıft terms are slightly different from their reference counterparts. All we can say is that altimeter data neither enhanced nor detracted from the nonaltimeter solution.

The resulting tracked and extrapolated ephemerides are essentially identical to their nonaltimeter counterparts. Tables 7 and 9, lines 3 and 8, give the results for both cases.
C. Altimeter + All Data from a Single Doppler Site (SDP)

Like the single C-band site case above, we find that altımeter data do not add anything to the solution but neither do they hurt. A comparison of Tables 10 and 12 (columns headed SDP) gives similar results for the single doppler site with or without altimeter data.
D. Altimeter + Two Passes from a Single C-Band Site (2CB)

This presents the first interesting case for the introduction of altimetry data. Without altimeter data, this case (see previous section) resulted in hundreds of meters' deviation from the reference ephemerides. The introduction of altimeter data into the orbit determination proceśs essentially recovers the reference cases. The largest correction to the reference Kepler elements is 10 m (as opposed to almost 700 m), and the tracked as well as extrapolated ephemerides differ only by a few meters (rms) from their reference counterparts. The column headed 2CB in Table 12 (with altimeter) shows dramatic improvement over column 2CB in Table 10 (without altimeter). Table 7, 1ınes 5 and 10 , can be compared to Ines 4 and 9, respectively, for the tracking results. Adding altimeter data reduces the deviation from the reference ephemerides from 462 m to 9 m (Span 1) and from 690 m to 11 m (rms results). Similarly, the extrapolated ephemerıdes (Table 9, lines 5 and 10) are only slightly worse than their reference counterparts: 12.4 m versus 5.2 m for $S p a n 1$ and 14.2 m versus 7.1 m for reference 2. Figures 19 and 20 are plots of the ephemeris deviation from their reference counterparts (tracks). (The extrapolated navigation results are plotted in Figs. D-11 and D-12.)

Table 12
GEOS-3 Orbit Determınation with Altımeter and Other Data, 1976 Days 62 to 65 (deviations from reference orbit)

$\delta \mathrm{a}(\mathrm{m})$	SCB		SDP		2CB		2LR	
	S1.	S2	S1	S2	SI	S2	S1	S2
	0	0	0	0	0	0	0.3	0.2
$\mathrm{R}_{0} \delta \mathrm{e}(\mathrm{m})$	0	-6.4	0	2.6	0.6	1.3	0.6	0
$\mathrm{R}_{0} \delta 1(\mathrm{~m})$	2.5	4.3	3.5	-0.5	5.4	10.5	-84.3	129.2
$\mathrm{R}_{0} \delta \Omega(\mathrm{~m})$	-2.0	-0.9	1.3	-0.7	-6.8	-7.8	106.1	87.6
$\mathrm{R}_{0}(\delta \omega+\delta \mathrm{M})(\mathrm{m})$	0.8	-1.8	-4.3	-1.4	-6.2	-0.9	81.2	12.4
Altimeter Bıas (m)	-0.4	0.5	0.7	0	-0.4	0.3	-0.7	0.4
Altimeter Drift (m/day)	0.2	0.1	-0.2	-0.2	-0.2	-0.3	-0.2	-0.3

```
SCB - All passes from a single C-band site (sta 4150)
SDP - All passes from a single doppler site (sta 111)
2CB - Two C-band south-going passes (one/day sta 4150)
2LR - Two laser south-going passes (one/day sta 7067)
S1 - }1976\mathrm{ days }62\mathrm{ to }6
S2 - 1976 days 64 to 65
Ro
```


Fig. 19 GEOS-3 Ephemeris Differences, Two Passes, Station 4150 (with altimeter) Track, Reference Track, 1976 Days 62 to 63

Fig 20 GEOS-3 Ephemeris Differences, Two Passes, Station 4150 (with altımeter) Track, Reference Track, 1976 Days 64 to 65
E. Altnmeter + Two Passes from a Single Laser Site (2LR)

Since the addition of altimeter data to two C-band passes improved the orbat determination solution, we expected similar results with the two laser passes. We were surprised to discover that adding altimeter data did not improve the results. A comparison of Tables 10 and 12 (columns headed 2LR) shows that Span 1 was left unchanged by the introduction of the altameter data, whereas, for Span $2, \delta i$ and $\delta \Omega$ show a reversal in sign and no improvement in magnitude.

At first glance the results are surprising, but a closer look at the situation uncovers the following pertinent facts:

1. Most of the altimeter data were confined to the South Atlantic and Indzan Oceans;
2. Span 2, which contanned a few passes in the North Pacific Ocean, had predominantly north-going passes;
3. The C-band site (Green River, UT) 15 located at $39^{\circ} \mathrm{N}$, $110^{\circ} \mathrm{W}$. All passes were heading south; and
4. The laser site (Bermuda) is located at $32^{\circ} \mathrm{N} 65^{\circ} \mathrm{W}$. Span 1 had two south-going passes and Span 2 had two north-going passes.

We can now examine the differences in the two cases. The C-band site, located in the northwestern portion of the United States, was clearly enhanced by the addition of altimetry data that were predominantly from the south and east parts of the world. The laser site, located $45^{\circ} \mathrm{E}$ and $7^{\circ} \mathrm{S}$ of the C -band site, ganned little by the introduction of altametry data. Furthermore, for Span 2 there were four altimeter passes in the northern hemisphere, two of them in the Pacific Ocean. Unfortunately, all four had the same heading (north) as the laser passes and did not adequately complement the laser data.

F. Altimeter Data Only

This last case is only interestang as an exercise. We knew from the synthetic noise-free data experiment that orblt determination with altimeter data alone is not well-conditioned. In Table 13 we present a series of orbit determination results with altimeter data alone, starting with the unconstrained solution (A) and ending with the most constrained case (C).

Table 13
GEOS-3 Altımeter Orbıt Determınation, Altımeter Data Only, 1976 Days 62 to 65

	A		B		c		D	
	SI	s2	S1	S2	Sl	S2	S1	S2
$\delta \mathrm{a}(\mathrm{m})$	5.0	-10	-49	-5 0	-51	-6 2	-07	-2 2
$\mathrm{R}_{0} \mathrm{\delta e}(\mathrm{~m})$	06	-0 6	-06	0	-0.6	-13	0	-06
$\mathrm{R}_{0} \delta i(\mathrm{~m})$	5996	4604	2086	5846				,
$\mathrm{R}_{0} \delta \Omega(\mathrm{~m})$	256797	324635	-32 6264	118136				
$\mathrm{R}_{0}(\delta \omega+\delta \mathrm{M})$ (m)	5072	-478	-433 6	-671				
Altimeter Bias (m)	36	-0 8					-11	-1 5
Altimeter Drift(m/day)	-02	-0 44					-0 2	-0 34

[^3]Case A does very poorly in $\delta i, \delta \Omega, \delta \omega+\delta \mathrm{M}$. Removing the bias and drift parameters (B) does not improve the solution. In the last two cases, we eliminated $\delta, 0 \delta$, and $\delta \omega$ from the fitting space. Here it is interesting to note that case C is actually overconstrained, and as a result the altimeter bias corrupts the semimajor axis (as it did for case B). The last case (D) Illustrates that altimeter data are useful in determining satellite semamajor axis, eccentricıty, altimeter bias, and drift. All we need is another data type to determine the node, anclination, and perigee.

7.0 SUMMARY

The objectives of the GEOS 3 orbit determination expermment were to determine the nature and improvement in satellite orbit determination when precise altimetric heaght data are used in combination with conventional tracking data. To accomplish this, a digital orbit determination program was developed that could singly or jointly use laser ranging, C-band ranging, doppler range difference, and altimetric height data. The program edits and welghts the data and solves for the orbit initial conditions and five auxiliary parameters. The software integrity was verified by using synthetic data, thus permitting an investigation of the orbit determination procedure using several types of tracking data as well as altimeter data alone.

Soon after data became available, two intervals were selected and used in a preliminary evaluation of the GEOS-3 altimeter data. Since the altimeter data were inordinately sparse and were confined principally to one geographic region, this effort served primarily to validate the integrity of the digital orbit determination program.

After all the tracking data had become available, a detailed study was made using a span of time for which an intensive effort had been made to collect tracking data on a worldwide basis. However, again the distribution of the altimeter data was far from ideal.

With rather sparse altmeter data alone it was possible to determine the semimajor axis and eccentricity to wathin several meters and the along-track position to whthin several kilometers, in addition to determining an altimeter height bias. When used jointly with a limited amount of either c-band or laser range data, it was shown that altimeter data can improve the orbit solution.

Had altimeter data been available continously around the orbit and on a worldwide basis, more precise results could have been obtained. But this is of no consequence here; our intent was to demonstrate the practicality of using altimeter data in the ephemeris computation. The data distribution was certainly ade-quate to accomplish this goal.

8.0 CONCLUSIONS

The investigations undertaken here indicate that altmeter helght data can be a usefūl sourc̄e of tracking information. However, quantitative measures for the efficiency of the altimeter data for GEOS-3 were somewhat obscured by the sparsity of the data. A good distribution of data either around the orbit or geographzcally was not available. With the sparse altimeter height data alone it was possible to determine the semimajor axis and eccentricity within several meters of the reference orbit and an altimeter height bias. The along-track position of the spacecraft was determined to a precision of a few kilometers.

Conventional tracking data, i.e., doppler, C-band range, and laser range, from a single midlatitude site provides enough information to determine the satellite ephemeris. Consequently, combining altimeter height data with the conventional data does not permit orbit improvement. However, in such an'approach it is possible to determine a measure of the altimeter bias.

The study does show that for near-polar orbits, data from a conventional tracking site at the middle latitudes operating on a regular but time-sharing 8 -h shift will produce inferior orbits. However, high-precision orbits can be obtained if these data are supplemented by altimeter height data.

It had been anticipated that a part of the study would be devoted to short-arc orbit solutions. However, the intensive tracking data from several sites in the same geographzc region were not available.

9.0 RECOMMENDATIONS FOR FURTHER STUDY

This study, although not conclusive; shows that altimeter height data of the quality obtanned from GEOS-3 can be useful for orbit determination. From the nature of the structure of the altimeter residuals, it can be concluded that the availability of a more precise geold model would have improved the orbit determination precision. Such a geold should be avaılable as a result of the geoid determination studies undertaken as part of the GEOS-3 efforts.

The SEASAT spacecraft appears to be an ideal vehicle for further orbit determination studies using altimeter data. Since SEASAT altimeter data wall be stored in the spacecraft for telemetry to ground sites, the problems experienced on GEOS-3 with data distribution should not occur. Most of the software developed for GEOS-3 investigation should be usable, with modest changes, for SEASAT.

ACKNOWLEDGMENTS

We are indebted to the personnel at NASA, Wallops Island, particularly to H. Ray Stanley who listened patientiy to our complaints and did his best to satisfy our needs; to NASA, in general, for the opportunity to participate in an interesting and meaningful scientific experiment; and to our secretaries, Irene Hamil and Jessie Hicks, for assisting us whenever possible.

REFERENCES

1. J. Marsh, private communication, 1976.
2. F. J. Lerch, S. M. Klosko, R. E. Laubscher, and C. A. Wagner, "Gravity Model Improvement Using GEOS-3 (GEM 9 and 10)," GSFC X-921-77-246, September 1977.

Appendì ${ }^{\prime}$ A'
 DESCRIPTION OF THE SOFTWARE MODULES

EPHEMERIS GENERATOR

The ephemeris generator converts a"set of infial conditions (state vector) into a table of satellite positions as a function of time by numerical solution of the inltial value problem

$$
\overrightarrow{\mathrm{I}}=\overrightarrow{\mathrm{ma}} .
$$

The table so constructed is stored on the ephemeris file, a data set residing on an external storage device.

The numerical integrator is a predictor-corrector scheme using a Cartesian coordinate system and calling a large package of subroutines to obtain the force vector, $\overrightarrow{\mathbf{f}}$. This integrator is in turn invoked by a higher level routine on a step-by-step basis until the required ephemeris table has been created and stored on the ephemeris file. The forces modeled and integrated are:

1. Earth gravity (inputable geoid),
2. Third-body perturbation• sun and moon,
3. Earth body tides: sun and moon,
4. Atmospheric drag (Jacchıa model),
5. Sun's radiation,
6. Nutation and precession effects, and
7. Polar motion.

ALTIMETER FORMATOR/SIFTOR

The altimeter FORMATOR/SIFTOR is the first processor to handle incoming altimeter data. Altimeter data consist of $80-$ character records, one record per altimeter data point. Since altimeter data rates are high (10 or 100 points/s), the volume of data is large. For example, at the high data rate, a $10-\mathrm{min}$ segment will result in 60000 data records. Tracking altimeter data
requires many such segments (passes) simultaneously. The high data rate exceeds by far even the most stringent tracking requirements. A rate of one point every 10 s is quite sufficient. Clearly, one of the functions of the FORMATOR/SIFTOR is to collapse the incoming data into an equivalent but much smaller set. The functions performed by the FORMATOR/SIFTOR can be summarized as follows:

1. Detect and eliminate any data point with non-numeric characters,
2. Check for monotonically uncreasing data time and eliminate data points that do not conform (detect bad tame, etc.),
3. Eliminate points with unreasonable sea-surface helght (overland data),
4. Eliminate points with unreasonably large smoothing slgma,
5. Fit a polynomal of glven order to data points in a given time segment of data (i.e., 10 s), detect and eliminate bad points; slide the time segment along until all uncoming data are processed,
6., Break up data into pseudo passes defined by an inputable tıme gap (ı.e., start a new pass if the time gap between two successive data pounts is greater than x minutes),
6. On option, compute an equivalent altimeter range for each fitted time segment at an existing data point time near the center of the span, replace the former wath the fitted value and the latter with the rms of the fitted residuals for the segment, eliminate bad points based on the rms of the fitting interval, eliminate all points in the interval if (a) rms is greater than the given threshold and (b) not enough data are avallable for fit, and
7. Save elther the full or collapsed data for subsequent processing by the Altameter EDITOR/PEF Program.

LASER/C-BAND DATA FORMATOR/SIFTOR

Laser and C-band range data for the GEOS-3 satellite consist of 80 character records, one record per laser or C-band measurement. Our experience with short-count doppler has demonstrated clearly that the high-density data (one per 4 s) are not necessary for good orbıt determination. Jyplcally choosing every fourth and
fifth point ls quate sufficient. Reducing the laser (C-band) data density is therefore both realistic and desirable, consequently, one of the features of the Laser/C-band SIFTOR is to aggregate or collapse the incoming raw data. The functions of the Laser/C-band Data FORMATOR/SIFIOR are as follows:

1. Detect and elmmate data points whth non-numeric characters,
2. Check for monotonically $1 n c r e a s i n g$ data tames within a gaven pass, eliminate data that do not conform,
3. Fit a polynomial of given order to data points in a given time segment (i.e., 10 s), detect and eliminate bad points, slide the time segment along until all passes are processed,
4. Detect pass boundaries in the incoming data (a new station number signals a new pàss) and create new pass headers,
5. On option, compute an equivalent range for each fitted segment at an existing data point time near the center of the span,
6. Compute and save tropospheric parameters for later use by the EDITOR/PEF Program, and
7. Save elther the full or collapsed data for subsequent processing by the Laser/C-band EDITOR/PEF Program.

DOPPLER FORMATOR/SIFTOR

Source doppler data can be defined as strings of numeric characters. The function of the FORMATOR is to format source data into arıthmetıc data and then to convert the data according to the formulation for that source. The FORMATOR processes one data group (pass) at a tıme. The definition of a data group is a numeric string of source data that is uniquely identified by a header record preceding the data and may have a record that trails the data. The trailing record usually provides weather information associated wath the data.

The FORMATOR performs the following tasks:

1. Prelimınary processing of data.
a. Correction to observed epochs and time intervals in accordance with time calibration information provaded in the header or otherwise.
b. Preliminary editing to delete defectıve data such as incomplete information (missing epochs, refraction counts) or unreasonable data (falls reasonable value tests).
c. Ionospheric refraction corrections to data where necessary.
2. Weather data recovery (when present).
3. Computation and saving of troposphere parameters for later use by the EDITOR.

The SIFTOR or Orbit Independent Data Editor performs data editing that does not require a satellite orbit. Data are checked for smoothness and poor data are sifted out. The scheme used is second-differencing, which requires a fairly dense data sample for proper operation. A second function performed by the SIFFIOR is data aggregation. After sifting we may elect to aggregate or condense the data for more efficient handling downstream (EDITOR/PEF).

ALTIMETER EDITOR/PEF

The Altimeter EDITOR/PEF processes all sifted altimeter data passed to it in the sifted altimeter data file. The program Ignores pass boundaries and treats all data points in the same manner. Data are retrieved sequentially and for each data point a set of nine partials and a residual are computed. The residual is computed using an ephemeris file that must be supplied. The partials are computed using a propagated Kepler orbit. The partials and residuals for each data point are accumulated into the normal matrix and R.H.S. vector and are saved on a file for subsequent processing by the SOLVOR. The nine partials are with respect to.

1. Slx orbit parameters,
2. Altimeter range blas,
3. Altameter range-rate bias, and
4. Along-track force bias.

Data edıting is lımıted to strıpping indıvidual nolsy data points.

LASER/C-BAND EDITOR/PEF

The Laser/C-band EDITOR/PEF processes all sifted laser/Cband data passed to it via the sifted laser/C-band data files. The laser/C-band processor performs a dual function. The program navigates each pass in the MSR coordinate system. Ignoring pass boundaries, the program computes seven orbit partials and a residual for each data point. The partials and residual are accumulated into the normal matrix and R.H.S. vector and are saved on a file for subsequent processing by the SOLVOR. The seven partials are with respect to:

1. Six orbit parameters, and
2. Along-track force bias.

In the navigation process, a range bias and a range-rate bias are determined along with the ECA and ECR errors. The blas and rate terms are used as addıtional criteria for detecting bad passes. The program has an option to remove the effects of the fitted range blas and range-rate bias from the data. (This option has not been exercised in the orbit determination experiment.) Options are available to remove the effects of the neutral atmosphere on the propagation velocity and to correct for the effects of special relativity.

DOPPLER EDITOR/PEF

The Data Editor has the assigned task of detecting and removing spurious and nolsy data. Local smoothing (i.e., polynomial fitting) works well in detecting spurious data but fails in detecting an entire set of data that is biased though internally consastent. Bad data are detected in the doppler editor in the navigation process. The doppler editor computes pass weights that are passed to the PEF Program along with the along-track, slant-range, and frequency errors. Options are available to remove the effects of the neutral atmosphere on the propagation velocity and to correct for the efforts of special relativity.

The PEF Program computes a set of nine partials and a residual for each set of pass navigation results: ECA, ECR, and frequency. The partials and residuals are accumulated into a normal matrix and R.H.S. vector and are saved on a file for subsequent processing by the SOLVOR. The nine partials are with respect to

1. Six orbit parameters,
2. Satellite frequency,
3. Satellıte frequency drift, and
4. Along-track force bias.

THE SOLVOR

The SOLVOR combines the four sets of normal matrices and R.H.S. vectors generated by the three EDITOR/PEF programs into a single combined matrix and R.H.S. vector. The separate data types are welghted by the number of passes each contributes to the combined normal matrix. Corrections to the 11 parameters are computed, and the inltial state vector $1 s$ updated. The 11 parameters solved for are as follows:

1. Six orbit elements $\left(A_{0}-A_{5}\right)$,
2. Satellıte frequency,
3. Satellıte frequency drıft,
4. Altimeter range bias,
5. Altimeter range-rate blas, and
6. Along-track force bias.

SOLVOR operates on any one or a combination of the four data types. Options are provided such that fewer than 11 parameters may be solved for. The six orbit parameters ($A, I=0,1, \ldots 5$) are related to the Kepler corrections as follows:

$$
\begin{aligned}
& \delta a=-2 / 3 A_{1}, \\
& \delta e=\frac{1}{2 a} A_{3}, \\
& \delta 1=\frac{1}{a} A_{5}, \\
& \delta \Omega=\frac{1}{a \delta 1 n(1)} A_{4}, \\
& \delta \omega=\frac{1}{2}\left(A_{0}-\frac{1}{2 e} A_{2}+\cot (1) A_{4}\right), \text { and } \\
& \delta M=\frac{1}{2 a e} A_{2} .
\end{aligned}
$$

Appendix B MSR COORDINATE SYSTEM (DEFORMATION)

$$
\begin{aligned}
& \bar{p}, \overline{\mathcal{L}}, \overline{\mathbb{S}}=\text { right-hand orthogonal coordinate system at the } \\
& \text { time of satellite closest approach to the avi- } \\
& \text { gator (tba), } \\
& f_{g} \quad=\text { ground (navigator or station) frequency, } \\
& f_{s} \quad=\text { satellite frequency, } \\
& \bar{\rho}=\bar{r}-\bar{x}_{N V} \text {, and } \\
& \dot{\rho}=\frac{d}{\partial t}\left|\bar{r}-\bar{r}_{N}\right|=\frac{\bar{r}-\bar{r}_{N}}{\left|r-r_{N}\right|} \cdot\left(\frac{\dot{\varphi}}{r-\bar{r}_{N}}\right) \text {. }
\end{aligned}
$$

At the tea $(M S R), \dot{\rho}=0$

$$
\left({\stackrel{r}{r}-\stackrel{r}{r}_{N}}\right) \cdot\left(\stackrel{\bullet}{r}-\dot{r}_{N}\right)=0
$$

or

$$
\bar{\rho} \cdot \frac{\cdot}{\rho}=0
$$

Therefore, we can define an orthogonal right-hand system at ta as

$$
\bar{\hbar} \triangleq \frac{\bar{\rho}}{|\bar{\rho}|}, \overline{\mathcal{L}} \triangleq \frac{\frac{\dot{\rho}}{}}{\left|\frac{\dot{\rho}}{\rho}\right|}, \quad \bar{\varepsilon} \triangleq \bar{p} \times \overline{\mathcal{L}},
$$

where p is the slant range and for near-earth satellites $\overline{\mathcal{L}}$ is roughly the along-track direction.

Appendix C
 PRELIMINARY ORBIT DETERMINATION RESULTS (SUPPLEMENTARY MATERIAL FOR SECTION 5.0)

Table C-1
Doppler Pass Navigation Results, 1975 Days 113 and 114
$-2.55799000 \varepsilon+01$ $-4.35898000 E+01$ $4.59070000 \mathrm{E}+00$ $-1.67050000 E+00$ $-3.60454000 E+01$ $1.84848000 \mathrm{E}+01$ $1.84848000 \mathrm{E}+01$
$1.49090000 \mathrm{~F}+00$ $-4.00584000 \mathrm{E}+01$ $9.28150000 \mathrm{E}+00$ $-1.76783000 \mathrm{E}+01$
$-4.28341000 \mathrm{E}+01$
$2.569 C 0000 \mathrm{E}+01$
$-1.44750000 \mathrm{E}+00$

1. $44750000 \mathrm{E}+00$
. $78498000 \mathrm{E}+00$
$3.78496000 \mathrm{E}+01$
$3.84182000 \mathrm{E}+01$
$3.84182000 \mathrm{E}+01$
$3.55744000 \mathrm{E}+0 \mathrm{I}$
2. $0.0052000 \mathrm{E}+01$
$3.05052000 E+01$
$-1.68990000 \mathrm{E}+0 \mathrm{U}$
$1.68990000 \mathrm{E}+0 \mathrm{O}$
$3.02181000 \mathrm{E}+01$
$3.02181000 E+01$
$-1.22223000 E+01$
$3.71886000 \mathrm{E}+01$
$1.39038000 \mathrm{E}+01$
$3.58190000 \mathrm{E}+01$
$4.86693000 E+01$
$4.10416000 \mathrm{E}+01$
$-108680000 \mathrm{E}+00$
h. $75080000 \mathrm{E}+00$
$-3.40100000 E+00$ $3.55056000 E+01$ $-0.71790000 \mathrm{E}+00$ $-161024000 \mathrm{E}+01$ $8.06530000 \mathrm{E}+00$ $-9.60210000 \mathrm{E}+00$ $-6.89240000 \mathrm{E}+00$ -6. $10610000 \mathrm{E}+00$ -6.106 $10000 \mathrm{E}+00$ - $1.19370000 \mathrm{E}+00$
$1.80340000 \mathrm{E}+00$
$1.80340000 \mathrm{E}+00$
$1.57324000 \mathrm{E}+01$
$2.96739000 \mathrm{E}+01$
1.06271000E+01
3. $28507000 \varepsilon+01$
$4.53936000 \mathrm{E}+01$
$4.83641000 E+01$
$2.16877000 \mathrm{E}+01$ 2. $\angle 3297000 \mathrm{E}+01$ $-5.57386000 \mathrm{E}+02$ $-2.30893000 E+01$
$5.36722000 E+01$
$7.3+282000 \mathrm{E}+01$
$6.62421000 E+01$
7.16167000E+01

Along Track (m)

Along Track (m)
$1.72252920 \mathrm{E}+00$ $-5.80075420 \mathrm{E}+00$ $4.26141313 E+00$
$-2.58071092 E+00$ $-2.58071092 \mathrm{E}+00$ - $6.70948385 E+01$ $6.69624159 \mathrm{E}+00$
$9.99307652 \mathrm{E}-01$ $-1.85098313 E+01$ $4.87318053 E+00$ $-6.51513777 E+00$ $-1.58594143 \mathrm{E}+01$ 2. $55741638 E+00$ -. 3812506 +00 $2.56597210 E+00$ 1.5365210E+00 $1.33658811 E+01$ $1.15184880 E+01$
$1.54469323 E+01$ $1.54469323 \mathrm{E}+01$ $1.64733854 \mathrm{E}+01$ $1.16708225 \mathrm{E}+01$ $1.96708225 \mathrm{E}+01$
$1.90478396 \mathrm{E}+01$ $1.90478396 \mathrm{E}+01$
$-9.60812567 \mathrm{E}+00$ $2.10655226 \mathrm{E}+01$ $2.10655226 \mathrm{E}+01$
$5.90276433 \mathrm{E}+00$ 9. $51530432 \mathrm{E}+00$ $2.02728614 \mathrm{E}+01$ $9.29419399 \mathrm{E}+00$ $7.36030490 \mathrm{E}+00$ 1. $80614356 \mathrm{E}+01$ 1.26945481E+01 $5.25055176 \mathrm{E}-02$ $2.07554723 \mathrm{E}+01$ $1.23935564 \mathrm{E}+01$ $5.37215245 \mathrm{E}-01$ $2.33757461 \mathrm{E}+01$ 1.59871013E+01 $1.89575508 \mathrm{E}+00$ 2. $2.00356933 \mathrm{E}+01$ 8. $51610707 \mathrm{E}-01$ 2. 780507 95E $2.39678916 E+01$ $3.14558226 \mathrm{E}+00$ $2.76203989 E+01$ $223673296 \mathrm{E}+01$ $3.28237892 \mathrm{E}+01$ $3.28404892 E+01$
$3.0840422 E+01$ $2.23350015 E+01$ $3.47597816 E+01$ $3.35386729 E+01$ 2.90764482E+01 2.95220892E+01 2. $57061661 E+01$ $1.91681597 \mathrm{~F}+01$ 3.13929636E+01 2.50337990E+01

Resid

$-2.730242925+01$ $-3.77830658 E+01$ 3.24286873E-01 $7.10210919 \mathrm{E}-01$ $-1.89505615 \mathrm{E}+01$ $1.17895580 E+01$ $4.91592348 \mathrm{E}-01$ $-2.154856875+01$ $4.40831947 E+00$ $-1.11631622 E+01$ $-2.69746857 E+01$ $2.31325836 \mathrm{E}+01$ $2.44833409 \mathrm{E}+02$
-4.94590066 E $3.94590066 \mathrm{E}-02$ $3.44837109 E+01$ $3.44837189 E+01$
$2.61198120 \mathrm{E}+01$ 2. $29712677 \mathrm{E}+01$ $2.14723816 \mathrm{E}+\mathrm{O}^{2}$ $1.95318146 \mathrm{E}+01$ $-1.33607225 t+01$ $1.11702604 E+01$ $1.11702604 E+01$
$-2.61414433 E+00$ $-2.61414433 E+00$
$1.61230774 \mathrm{E}+01$ $1.98065043 \mathrm{E}+01$ $2.63036957 \mathrm{E}+01$ $2.83964386 \mathrm{E}+01$ $3.17474060 \mathrm{E}+01$ $-8.44690990 E+00$ $-1.23106350 E+01$ $-1.61555481 E+01$ $3.54530945 E+01$ $-2.74753723 \mathrm{E}+01$ $-2.84959564 \mathrm{E}+01$ $7.52808475 \mathrm{E}+00$ $-3.30578461 t+01$ $-2.26795013 E+01$ $-1.95539551 E+01$ $-2.20343933 \mathrm{E}+01$ $-3.95031071 \mathrm{E}+00$ -2. $60016785 \mathrm{E}+01$ - $-1.17479916 \mathrm{E}+01$ $-1.17479916 E+01$ $1.25868177 E+01$ $-1.17402296 E+01$ $602691078 \mathrm{E}+00$ 1.45531778E+01 $1.60290985 \mathrm{E}+01$ $-1.30720816 \mathrm{E}+01$ $-1.12089729 E+0$ $-8.48150482 \mathrm{E}+0$ $-5.26113892 \mathrm{E}+0$ $2.79660339 E+01$ $5.42600403 E+01$
$3.48491364 E+01$
$4.65829010 E+01$

Slant Range (m)

Obsvd	Pred	Resid
8545000E+01	$1.12367422 \dot{\varepsilon}+01$	$6.61775780 E+00$
$1.33997000 E+01$	$8.12403662 \mathrm{E}+00$	$5.27566338 E+00$
$1.18620000 \mathrm{E}+01$	$1.05734353 \mathrm{~F}+01$	1. $28856468 \mathrm{E}+00$
$2.42488000{ }^{\text {+ }}$ O 1	$1.25247523 \mathrm{E}+\mathrm{O}$	1.17240477E+01
$1.21774000 \mathrm{E}+01$	$6.99412001 E+00$	$5.18327999 \mathrm{E}+\mathrm{CO}$
$2.13481000 \mathrm{E}+01$	$1.01618960 \mathrm{E}+0 \mathrm{~L}$	$1.11862040 \mathrm{E}+01$
$3.09190000 \mathrm{E}+02$	1.0762 2007E + 01	$201567993 E+01$
-3.85820000E+00	-4.20747684E-01	-3.43745232E+00
$2.37359000 \mathrm{E}+01$	$7.23745640 \mathrm{E}+00$	$1.64984436 E+01$
$3.96316000 \mathrm{E}+01$	1.132500ヶ2E+01	$2.83065948 E+01$
$6.89430000 \mathrm{E}+30$	$5.88054611 \mathrm{t}+00$	$1.01375389 \mathrm{E}+00$
-2.77908000E+01	-9.32531538E+J0	-1.84654846E+01
$2.11960000 t+\mathrm{J} 1$	$4.82447900 t+0 \cup$	$1.63715210 \mathrm{E}+01$
$3.67358000 \mathrm{E}+01$	$9.369024+9 \mathrm{E}+00$	$2.73667755 E+01$
-4.0590300JE+01	-1.18112167E+01	-2.87790833E+01
-3.08260000E+00	-3.36648989E+30	$2.83889890 \mathrm{E}-01$
$1.74372000 \mathrm{e}+01$	$4.44582122 \mathrm{E}+00$	$1.29913788 \mathrm{E}+01$
-1.73580000E+01	2.16845703E-03	-1.73601685E+01
$1.23163000 \mathrm{E}+01$	$6.29104766 E+00$	$6.02525234 \mathrm{E}+00$
$2.33800000 \mathrm{E}-01$	$6.84024722 \mathrm{E}+00$	-6.60644722E+00
-3.14283000E+01	-9.07971296E+00	-2.23485870E+01
-1.86776000E+01	-2 30603323E+00	-1.03715668E+01
-2.63740000E+00	-1.68956736E +0	-9.47332644
-3.08780000E+30	$1.58109191 E+00$	-4.65889191E+00
$6.06400000 \overline{+}+00$	2.25384981E+00	$8.10750186 \mathrm{E}-01$
$-1.29548000 \mathrm{E}+01$	-8.94072663E+0U	-4.01407337E+00
-7.67170000E+00	-4.97429991E+00	-2.69740009E+00
$9.87700000 \mathrm{E}-01$	-1.20172515E+01	$1.33049515 \mathrm{E}+01$
$7.26220000 E+00$	$1.11526982 \mathrm{E}+01$	$-3.89049816 E+00$
$2.57270000 \mathrm{E}+00$	$1.23504348 \mathrm{E}+01$	-9.77773476E+00
$1.42803000 \mathrm{E}+01$	7.88569532E +00	$6.39460468 \mathrm{E}+00$
$2.52090000 \mathrm{E}+00$	-2.80351616E+J0	0
$2.42020000 \mathrm{E}+\mathrm{JO}$	$1.149472495+01$	-9.07452488E+00
$1.57694000 \mathrm{E}+01$	$8.11879671 E+00$	$7.65060329 \mathrm{E}+00$
$1.11319000 \mathrm{E}+01$	-1.96534140E +00	$1.30972414 E+01$
-6.20620000E+00	$107556835 \mathrm{E}+01$	-1.69618d35 +01
$3.10500000 \mathrm{E}+00$	$1.30625157 E+01$	$-9.95751572 \mathrm{E}+00$
$6.73480000 E+00$	$5.61315789 \mathrm{+}+00$	$1.1216421 L E+00$
-3.46430000E +00	$1.02509729 E+Q 1$	$-1.37152729 E+01$
$2.14700000 \mathrm{E}+00$	1. $14294497 E+01$	-9.28244972E+00
$-1.34840000 E+00$	-2.11280567E +00	$7.64405668 \mathrm{E}-01$
-1.24750000E+00	1.001666 U2E +01	$-1.12641602 \mathrm{E}+01$
-7.26000000E +00	$8.052061318+00$	-1.53120613E+01
$1.35655000 E+J 1$	$4.87876103 \mathrm{E}+00$	$8.686738975+00$
-7.69240000E+00	$5.24556158 \mathrm{c}+00$	-1 $29379616 \mathrm{E}+01$
$-1.98471000 \mathrm{E}+01$	-1.14185426E+01	$-8.42855740 \mathrm{E}+00$
-9.54970000E +00	-3.46042178E+00	-6.08927822E+00
-5.02250000E +00	$4.37971500 E+30$	$-9.40221500 \mathrm{E}+00$
$3.45900000 \mathrm{E}-01$	$7.06050438 \mathrm{E}+00$	-6.71460438E+00
-1.65062000E+01	-1.55644580E-01	-1.63505554E+01
-7.14600000E-01	$5.943087196+00$	
$1.52533000 \mathrm{E}+01$	-8.56493730E+00	$2.38182373 \mathrm{E}+01$
$2.15293000 E+01$	$-1.16322338 \mathrm{E}+01$	$3.318 .15338 \mathrm{E}+01$
-1.30074000E+01	1.16419530E+01	-2.46493530E+01
$2.85996000 \mathrm{E}+01$	-3.81005271E+00	
-1.90241000E+01	$8.41178257 E+00$	$-2.74358826 \mathrm{E}+01$
-5.97430000E+00		

Table C-2
Orbit Initial Conditions for 1975 Days 113 and 114

Cartesian Elements

System	Epoch			Frequency Offset (ppm)	$x\left(R_{0}\right)$	$\mathrm{Y}\left(\mathrm{R}_{0}\right)$	$z\left(R_{0}\right)$	$\mathrm{X}\left(\mathrm{R}_{0} / \mathrm{s}\right)$	$Y\left(\mathrm{R}_{0} / \mathrm{s}\right)$	$\mathrm{Z}\left(\mathrm{R}_{0} / \mathrm{s}\right)$
	ys	day	5							
True of Date	75	113	0	-50 014940	-0 4714078877	04278658466	09359088321	117353858×10^{-4}	107530042×10^{-3}	-4 31526935×10^{-4}
Mean of 1950	75	113	0	-50 014944	-0 4666234493	04305314782	09370831834	122430225×10^{-4}	107462273×10^{-3}	-4 31804916×10^{-4}

Osculating Kepler Mlements

System	Epoch			Frequency Offset (ppm)	a (R_{0})	e	i (rad)	Ω (rad)	ω (rad)	M (rad)
	yr	day	s							
True of Date	75	113	0	-50014940	11311360913	9626921×10^{-4}	20071447851	-14923754406	-0 3691128899	23604258925
Mean of 1950	75	113	0	-50 014944	11311360831	9626608×10^{-4}	20046664192	-1 4981923442	-0 369150506	23603359058

Doppler Data Navigatıon Results, 1975 Days 115 and 116

Yr	Day	s	ECA (m)	ECR (m)	Elev (deg)	Sta	SAT	Az (m)	Pass*	Weight code**
75	115	798.014	15.2004	6.0152	22.027	019	01175	348.601	S	
75	115	3530.615	-0.6278	17.5040	38.987	018	01175	30.947		
75	115	4014.102	3.9754	-1.1496	22.367	018	01175	153.000	S	
75	115	4744.896	-0.1605	2.9030	47.011	103	01175	307.374	S	
75	115	9440.322	-2.1865	7.5714	68.874	016	01175	230.073		
75	115	10530.797	5.7162	3.0434	11.486	014	01175	109.822	S	
75	115	13412.3 .17	-9.3113	L.2913	32.840	112	01175	131.795	S	
75	115	21744.138	-6.9845	-9.2543	12.773	111	01175	32.016		
75	115	22047.073	0.9090	-4.1358	17.905	018	01175	221.043		
75	115	22484.461	2.0954	-1.1593	80.190	014	01175	149.809	5	
75	115	26476.453	-13.4598	-4. 6019	23.002	C08	01175	64.503		
75	115	27607.428	5.3035	-12.1758	52.899	111	01175	49.583		σ
75	115	28402.548	13.2030	-5.58 35	62.256	C14	01175	351.634	S	
75	115	32392.862	-18.2674	-5.5841	39.400	008	01175	235.580		
75	115	33670.564	-7.2624	-4.5898	23.936	103	01175	47.121		
75	115	39483.652	7.1359	17.5189	27.209	192	01175	244.199		σ
75	115	40235.232	-12.4370	6.1391	74.715	014	01175	214.181		
75	115	46196.680	-11.4348	11.3906	29.662	014	01175	234.427		
75	115	63033.772	3.4257	-5.1457	19.914	024	01175	235.858		
75	115	64172.553	-1.4738	7.2306	79.824	C27	01175	235.683		
75	115	65575.475	-13.9241	16.0229	46.830	016	01175	124.983	S	
75	113	66904.207	19.5520	-25.2495	62.396	008	01175	122.256	S	σ
75	115	69036.257	3.0134	-3.7412	16.165	112	01175	67.069		
75	115	69916.232	5.3944	0.4843	33.833	022	01175	57.653		
75	115	71500.297	-0.7042	7.9524	50.587	016	01175	323.662	S	
75	115	72889.343	10.8657	0.9739	14.024	008	01175	294.026	s	
75	115	74974.446	12.2847	-0.7633	70.947	112	01175	234.622		
75	115	78109.674	76.2159	-103.7481	16.346	111	01175	112.600	S	σ, N
75	115	83222.289	20.9296	13.9758	20.505	016	01175	5.506		
75	115	84352.379	21.9030	4.3615	14.902	103	01175	112.766	S	
75	116	2679.568	7.6120	17.65 23	32.666	C16	01175	26.591		
75	116	3534.739	13.8502	-5.9323	17.581	111	01175	323.465	S	
75	116	9144.637	9.3029	-1.0610	26.004	018	01175	170.768	S	
75	116	9644.969	10.7712	-1.4874	7.897	014	01175	105.420	S	E
75	116	10961.693	10.6851	-2.2729	43.427	024	01175	121.336	5	
15	116	14532.749	2.8076	2.9460	22.248	016	01175	243.871		
75	116	15659.820	1.8151	5.1236	29.728	014	01175	125.555	S	
75	116	17563.215	9.7290	-5.6689	23.268	112	01175	135.214	S	
75	116	21621.147	-11.4475	0.5224	74.743	014	01175	145.839	S	
75	116	23460.640	8.4700	-1.7268	59.960	112	01175	300.753	S	
75	116	28296.261	13.4423	5.6189	34.687	027	01175	117.890	S	
75	116	31537.829	-4.4090	-1.8914	62.975	008	01175	237.804		σ
75	116	23453.258	-11.8109	-5.5626	62.263	014	01175	8.469		
75	116	38710.258	-15.8013	1.8552	80.660	103	01175	238.216		
75	116	39371.833	-19.5112	1.3082	86.173	014	01175	209.931		
75	116	40068.778	-94.0184	80.7400	10.403	027	01175	331.026	S	σ, N
15	116	56272.202	-5.0475	16.6241	24. 804	024	01175	63.323		
75	116	57437.656	-34.0555	21.3722	16.098	027	01175	35.402		σ
75	116	62942.475	-43.0929	-2.3402	17.957	023	01175	55.805		
75	116	64706.731	-32.9910	11.7104	34.309	C16	01175	121.190	S	
75	110	$6 \in 109.339$	-7.3378	-55.0364	37.134	008	01175	124.498	S	σ
75	116	68165.251	-24.9579	-5.3136	9.390	112	01175	09.516		
75	116	70644.019	-21.4031	2.2751	64.756	C16	01175	319.543	S	
75	116	77236.423	-24.0099	$-10.66<{ }^{\prime}$	9.861	111	01175	109.774	S	
75	116	80003.803	-5.1451	3.0100	1 1. 755	112	01175	222.557		
75		8319	3.6854	-2	71.602	111	01175	123.229		

[^4]

Fig C-1 GEOS-3 Spatial Distribution of Altimeter Data, 1975 Days 113 to 114

Doppler Sites
Sao Jose Dos Campos

014	Anchorage, AK
016	Barton Stacey
018	Thule
019	McMurdo
022	San Miguel

024	Tafuna
027	Mizusawa
103	Las Cruces
111	Maryland
112	Smithfield
192	Austın, TX

Fig C-2 Doppler Tracking Sites, 1975 Days 115 and 116
ORIGINAL PAGE IS
OF POOR QUALITYI

4260	Pillar Point	7063	Greenbelt, MD	No data available from Station 4741
4281	Canton Island	7068	Grand Turk, BWI	Data from stations 4281, 4282, 4260 deleted from track
4282	Kaena Pt, HA			
4610	Ely, NV			
4760	Bermuda			
4840	Wallops Island, VA			
4860	Wallops Island, VA			

Fig C-3 C-Band and Laser Tracking Sites, 1975 Days 115 and 116

Fig C-4 GEOS-3 Spatial Distribution of Altımeter Data, 1975 Days 115 and 116

Appendix D
ORBIT DETERMINATION WITH GEM-9 USING 1976 DATA (SUPPLEMENTARY MATERIAL FOR SECTION 6.0)

Table D-1
GEM-9 Statıon Coordınates

Station No	Data Type	Location	Geocentric Coordanates		
			Latrtude (rad)	Longltude (rad)	Radius (R_{0})
4150	CBD	Green Rıver, UT	0677030269	-1 92180161	0.99888036
4198	CBD	Whate Sands, NM	0.56284717	-1 85686156	099922445
4280	CBD	Vandenburg AFB, CA	0.601896824	-2.104544838	099893066
4446	CBD	Pt Mugu, CA	0.592443649	-2.079644113	099894376
4452	CBD	Makaha Ridge, HA	0.383952408	-2 787751009	0.99960360
4742	CBD	Kaual, HA	0383792592	-2.786692272	099970751
4760	CBD	Bermuda	0.561548061	-1.128416818	099904014
4840	CBD	Wallops, VA	0.657206826	-1 31746335	0.99873676
4860	CBD	Wallops, VA	0.657537954	-1.317889779	099873755
4958	CBD	Kwajalein Island	0.15121800	2927379589	099992056
4959	CBD	Kwajalein Island	0151217425	2.927379927	099991770
4960	CBD	Wettzel, West Germany	0854418728	0.224758355	- 99818780
7067	LSR	Bermuda	0.5616506724	-1 12846300	0999038305
7068	LSR	Guantanamo, Cuba	03722772268	-1.241486555	09995476591
7069	LSR	Patrick AFB, FL	0.489878977	-1 40683607	099924733
008	DOP	Sao Jose Dos Campos, Brazil	0.40279387	-0 80057775	099957400
014	DOP	Anchorage, AK	1.06675988	-2 61494325	0997434527
018	DOP	Thule, Greenland	1.33433035	-1. 20023599	099683783
019	DOP	Mcmurdo, Antarctica	-1.3573110	290900804	099678968
103	DOP	Las Cruces, NM	0.56034612	-1.86320747	099922999
111	DOP	Howard County, MD	0.680244373	-1.34210217	0998682741
112	DOP	Smithfield, Australıa	-0.60203483	241998025	099892193

$R_{0}=6378.166 \mathrm{~km}$, used for scale length only, no physacal significance

Table D-2
Initial Conditions for Base Ephemerides

S	Epoch			Posation (R_{0})			Velocity ($\overline{\mathrm{R}}_{0} / \mathrm{ks}$)			Satellite Frequency Offset ($\mathrm{Hz} / \mathrm{MHz}$)	Altameter	
n	yr	day	s	X	Y	Z	X	Y	Z		Blas (m)	$\begin{gathered} \text { Drıft } \\ (\mathrm{m} / \mathrm{d} \mathrm{~g}) \end{gathered}$
1	1976	62	0	-07570435916	-0 3521877288	-0 7640123509	03047283166	08776691387	-07030347347	-50 00491	63	08
2	$79^{2} 76$	64	0	04079978211	09593416780	-0 4377777760	06494182970	01614902816	09556182991	- -5000474	32	204

S	Epoch			Osculations Keplex Flements					
n	yr	day	5	$\mathrm{a}\left(\mathrm{R}_{0}\right)$	e	i(rad)	$\Omega(\mathrm{rad})$	ω (rad)	M(rac)
1	1976	62	0	1 3317939153^{-}	- 002024954992	20070065633	087611017645	-07452598993	-1 5520266738
2	2976	64	0	1132662435	0002099181105	20068392904	09717403124	-10310177288	1 0 5873504512

$\mathrm{R}_{0}=6378166 \mathrm{~km}$

Table D-3
Doppler Navigation Results (base run)

Table D-4
Doppler Navigation Results (base run) Span 2

Table D－5
 C－Band Navigatıon Results（base run） Span 1

Y_{k}	JnY	ster	F（A） 1 ）	ECR（t）	ELV	STA	SAT ALY		v／S	RANGE BIAS （m）	RANGE DRIFT （km／day）	RESIDUALS	$\begin{gathered} \text { DELETION } \\ \text { CODE * } \end{gathered}$
70	$6 ?$	47340.633	3．2075	J 1045	3 CL 435	4150	750270121.738		5	－1 904	001	1727	
76	62	53741－853	－4．3406	J．0391	27．549	4150	75u270－42 549	S	5	3742	317	2250	
70	6.2	76447.315	－3．4774	－ 3,37	22．773	4150	$750270 \quad 40.402$			－． 886	1830	2616	D
70	51	82343． 330	6． 1517	$-5.1++6$	73． 272	4150	7502．70－123．533			1425	202	1.793	
75	65	40475740	－1．6816	1.4320	3）． 164	4150	75027 C 118.745		5	－ 146	－ 837	1882	
76	63	52390.770	－1．8010	－3 0）64	37.757	4150	750770－46．201	S	5	220	933	I 957	D
7 c	63	81475．658	$4.306 t 5$	1．6341	77 637	4150	$750270 \quad 53.676$			－2 227	－ 216	1852	
75	02	414．33．949	2．3519	－.- .9569	73．537	4198	750270－55．759	S	5	－5 238	－ 098	1.289	
70	62	L2222．766	－0．7492	U． 3367	－1．371	4198	750270－122．905			－3 054	377	910	
70	63	$4654412 ?$	－3 1695	）． 0341	74.482	4198	750270121.645	S	S	－5 486	367	1316	
75	63	81363.445	3.2471	2.0555	66． 312	4198	$750270 \quad 55.324$			－5 341	074	1333	
76	33	＋66．14 4）9	－3 965	－1．5757	21.672	4280	750270114.476		S	2205	－ 536	1203	
76	63	52334272	－1 9573	J． 1335	55．301	4280	75027n－52．676	S	S	3.958	－ 207	1089	
75	03	21ヶ14．163	－2．7227	－2．7ヶ23	28． 253	4280	75027046.955			－1852	939	1.111	D
76	$t 2$	47471.363	－0．5466	－3．3276	3 B －Ju3	4446	750270117.839	S	S	827	． 283	1.163	
70	62	82347． 265	－2．7273	－1．6783	43.512	4446	$750270 \quad 51.149$			-1341	＋．957	1476	D
76	63	4 c 604.420	－6． 7601	1．5345	24349	＋446	750270115.278	\＄	5	－4 076	1597	1869	D
76	63	31494445	1.6617	－2．0555	30.387	4446	$750270 \quad 47 \quad 872$			-3.430	067	1386	
76	42	3773.685	－2 3170	3.1119	71.313	4452	$750270 \quad 58.923$			－8 962	－ 788	1393	
76	63	7317.017	－3 0931	－2 2942	43.963	4452	750270 56．608			－7．769	420	1.554	
76	63	13855.232	－6． 6146	1.0544	1才＊ 750	4452	750270－115．235			－13 505	$-\quad 075$	1683	
76	63	58923．261	－4．0709	1.7372	78.351	4452	750270－59．201	S	5	－5 648	$-\quad 405$	1294	
76	62	82381.554	1.3757	－5．6394	31.820	4610	750270 54．281			377	031	． 869	
75	63	46530．449	08177	4.4776	26．745	4610	750270115.988	S	S	－ 630	－． 061	． 993	
76	63	52423.498	2.1990	－4．7711	52701	4610	$750270-49.375$	S	S	－1 369	． 116	926	
76	63	$8152^{3} 283$	3.3634	05111	56．359	4010	$750270 \quad 50.326$			－2 746	236	1080	
76	62	8773.068	－5．8423	－0．5317	71.337	4742	$750270 \quad 58.903$			－8．533	－． 078	831	
75	62	59777.863	－5．9345	－4．8352	48517	4742	750270－56．947	S	S	． 516	170	1．879	
76	63	13834.683	－7．1555	1.0568	19.829	4742	750270－115．221			－2 014	． 340	1167	
70	03	53922．372	－4．9742	3.3294	77．911	4742	750270－59．074	S	S	－8．743	$\text { - } \quad 074$	． 994	
76	62	35256.867	2.7288	4.3721	56.932	4760	750270 119．950	S	S	－5 631	$-\quad 582$	1.075	
76	02	41154．349	－1．2196	－2．3565	22．848	4760	750270－46．475	S		－3 590	348	． 992	
76	$\bigcirc 2$	73077.756	1.8485	1.3406	511134	$47+0$	$750270 \quad 53.374$			－5 385	474	． 943	
70	02	76004623	0.1595	2.4551	21.795	4760	750270－114．697			－4．070	$.128$	$.946$	
70	03	34392.679	－0．9835	9．8759	36．534	4760	750270117.421	5	5	－2．605	－． 259	871	
76	63	40304.186	－0．5802	－2．7411	32．369	4760	750270－49．738	5	5	－2．406	－． 031	875	
76	63	69223558	1.8744	－2．6050	$34+402$	4760	$750270 \quad 50.269$			－3 247	077	$.804$	
70	63	75137.525	2.4895	0.2396	33902	4760	750270－117．107			－2 597	． 326	． 914	
70	62	70240.227	7.2130	－2．4）17	35.806	4840	$750270 \quad 46.741$			－4 951	939	1.617	D
76	62	74154．690	－1．5213	5.0212	39.202	4840	753270－118．687			－1 462	1240	1.602	D
76	63	$+03<0.83 \AA$	1.1863	1.8218	81.977	4840	750270124.183	S	S	－5 017	． 390	1.652	
76	63	46203416	-2.0687	-23755	23． 460	4840	$750270-39.998$	\＄	S	－2．646	1.245	1.535	D
70	03	69389.865	－0．4378	2.1560	25．4b7	4860	$750270 \quad 43 \quad 106$			－11．649	－4．921	3423	B，D，σ
76	63	72269.960	－7．3171	$-4.1+27$	59397	4860	750270－121．751			－9．127	－2 231	3.062	$\mathrm{B}, \mathrm{D}, \mathrm{O}$
76	02	20636．579	－0．2550	3． 3024	44.475	4958	750270－118．052			－382 805	16223	2484	D
76	62	20134．438	16.0524	7.4557	43.409	4958	750270－59 929	S	S	-382191	11173	2.573	D
76	63	15797.453	－10．0076	12.7402	15． 766	4958	750270－118．856			-388009	12841	1932	D
76	42	14755．330	－0．0594	－25．3222	17．126	4959	$750270 \quad 57.572$			409.407	13467	2． 390	D
70	62	2， 6536.596	0.1678	2.8550	44476	4950	750270－118．043			386.234	14.583	3038	D，σ
70	02	66134 S3 B	3.1973	152269	43.410	4950	$750270-59.929$	S	S	381.768	12.328	2.260	D
76	63	19757.371	－14．3111	15．8738	$75 \quad 966$	4959	750270－119．025			384861	12718	3211	D，σ
76	62	$285 \mathrm{J7.417}$	106564	1.2398	$26 \quad 363$	4960	750270－25 636	S	S	－9 878	－ 159	448	
76	02	3435u． 332	－11．8365	－3．0980	16570	4960	$750270-4.451$	5	5	5856	3100	1.870	D
76	62	40184.990	1.7341	－3．1－92	20．161	4960	$75027 \mathrm{C} \quad 17.137$			5332	$-.510$	2145	
70	$\checkmark 2$	46050403	5.3930	2.2505	44.392	4960	$750270 \quad 37.374$			1034	－ 220	1.518	
76	02	51969．662	-3.455	5.375°	49757	4960	750270－124．655			3514	＋ 086	1.543	
76	63	15303．964	－16．0393	71202	19.346	4960	750270113.930	S	S	－6 101	1309	2131	D
7 s	01	21761．131	－8 8620	－3．2955	84.408	4960	750270130.873	S	S	2121	-301	1702	
77^{7}	63	27658.410	-2.1364	－3．3658	31415	4960	750270－30．002	S	5	2491	290	$\text { I } 560$	
70	43	33500.214	-16.1730	－7．22＋1	17．344	4960	$750270 \quad-9.134$	S		8280	3.555	2108	D
76	63	30341.113	2.3701	－7．1179	18． 253	4960	$750270 \quad 12.532$			5979	-1903	2407	
76	63	45107.192	－C． 2370	－1．2366	$30 . J 17$	4960	$750270 \quad 33.166$			1313	$-\quad 581$	1721	
76	63	51133.844	-0.7096	5.9906	63． 563	4960	750270－128．491			3413	－ 504	1509	
SUM	MMARI	（43 Passe	5）$-48 \pm$	$374-04$	4 ± 27								

＊B－Deleted for range bias
D－Deleted for range bias drift
σ－Deleted for post－navigation resıduals
（20 Passes Deleted）

Table D－6
C－Band Navigation Results（base run） Span 2

Yk	DAY	Ss	ESA（ ${ }^{\text {d }}$	ECくけ	1 2 LV	STA	SAT	1 mZY		V／S	RANGE BIAS （m）	RANGE DRIFT （km／day）	$\begin{aligned} & \text { RESIDUAL } \\ & (\mathrm{m}) \end{aligned}$		$\begin{aligned} & \text { DELETION } \\ & \text { CODE* } \end{aligned}$
76		73441 －51	？．751～	－72．3014	1454 \％	$4{ }^{\text {al }} 3$	7b02 70	51．J93			22978	1558	1.860		B，D
7.	6，4	＋5t．37．057	1.3816	－1．2625	26216	4150	750270	115.404	S		1.534	－ 1020	2.515		
76	14	51530.434	－-1.109 b	－4．7375	5．． 437	4153	750270	－49．09h	5		694	181	1.645		
76		24021－909	－2．4585	J．6125	23．743	＋13N	756270	40．492			－ 1159	510	1831		
76	－5	5Joln．973	－0．0336	1.3346	70．656	4150	75727 C	－53． 518	s		－ 1804	240	1577		
76	65	74767．377	2.8314	－0．2374	37． 741	4150	750270	46．436			－ 3324	299	2006		
7 r	6	． $36044+105$	C． 9837	3.9137	13． 110	4150	750276	－114．692			－2695	366	2331		
76	04	4ちfol 526	－4．041？	－2．7365	47． 146	4148	75.5276	118．477	5		－ 4913	411	1216		
7.	04	51584.448	3.7291	－3c321	$2 t .259$	41.90	756270	－47．710	5		－2232	－ 1045	1536		
71		Q 15177.235	－4．8089	2.1545	44．J36	4168	750270	52．219			－ 4422	561	1182		
76		－4315－413	C． 1185	－0．3563	3 3 .098	4148	750270	116.496	S		－ 6078	003	1406		
76		JU733．034	－0． 1249	－0．3700	17． －$_{\text {¢ }} 7$	4198	75027 C	－50 303	5		－ 1770	340	1.591		
70	65	95be3．3st	0.9980	$3.7+88$	39．305	4192	750270	C－118．C29			－ 5.680	258	I 323	\bullet	
75	65	59815.609	-7.0372	3.0122	os 371	4780	750270	121.479	\＄		3.378	． 748	I 071		
7.	65	SE7J8－970	1J．0573	－1．7918	21． 779	478C	750270	－43．958	5		5183	－ 2641	1.219		
70	64	1103.097	－3．0433	4.9474	＋2．${ }^{2} 44$	＋446	750270	－118．585			2261	1082	2782		D，σ
76		21677．685	－C．5594	12301	$72+92$	4446	750270	－54．933	S		438	－ 114	1122		
7 T		\＄0645－119	－1．605	－2．3342	21．304	4448	750270	44．432			－ 5135	575	1448		
76	64	7V63－211	$3.674 *$	－2．4306	73.374	4452	750270	54.248			－ 4087	867	2042		
76		$12 \times 71-403$	6.1607	1．0735	32473	4452	750270	－114．756			－10 453	023	1653		
75	04	bo363－87n	6.4517	1.7269	65．421	4452	750270	119.185	S		－6283	862	1464		
70	45	6212．71＇	2．0942	$0.2+97$	11． 192	4452	75J2 70	51．096			－4339	900	2276		
70		12179.112	1 C .2 CJI	2.435 C	55226	4452	750276－	-118.467			－8883	092	1531		
71		57202． 534	－3．0445	7.4383	40， 743	4452	750270	117．473	5		－6688	． 032	1396		
7\％		631Jり－11）	1． 1288	－12．4747	23760	4452	750270	$-53+158$	S		－ 7949	－． 059	1708		
70		4355.577	3.7053	－0．9719	24.149	4610	750270	－115．372			－．829	－ 492	1939		
75		bI512．062	－3．2636	－2．3138	75.731	4610	750270	-52.731	5		－ .385	1478	1．582		D
76		80G68－212	－3．9492	2.0286	40024	4610	750270	46．758			－ 2.253	－ 137	1．989		
7		50111．631	1．5404	30740	15．731	4610	7507 70	124.057	5		－ 4034	－ 131	936		
70		566033－342	$3.7 \mathrm{C7L}$	－5．4182	22．377	4610	750270	－39．807	5		－ 991	－ 036	1127		
76	65	79810．374	2.4859	J．8303	23.119	4610	750270	43．091			－ 2.317	． 329	1026		
76		85721.038	2.7489	1． 2529	54.373	4610	750270	－121．401			－ 2114	－4717	－ 917		
76	64	7Jコ2．548	0.7100	－4．9334	$\underline{3} 8.177$	4742	750270	54． 275			－ 8.710	－． 182	． 524		
76		12970．542	9.7742	6.4347	32.291	4742	750270－	－ 116.740			－6．819	－ .620	． 694		
70		54063．534	6.4455	－2．1308	5w． 295	4742	750270	119．181	S		－5 664	－ 327	1398		
76		17103．501	7．6229	4.7344	52.934	4742	750270	－118．473			－10．383	181	－ 581		
76		57202.272	－3． 3802	3.1317	40.470	4742	750270	117.436	5		－ 6905	.307	474		
70		43114．679	1.3257	－8．0428	23.627	4742	75027 C	－53．132	5		－ 3.412	． 188	884		
70		33526.061	1． 1017	2.1354	73.399	4760	750270	115．014	S		－ 2170	－ 244	808		
70		39450.570	－P． 1 C8\％	－＊＊1208	48.472	4760	750270	－52．906	5		－ 1360	－ 173	． 912		
76		68372．761	1.8235	－2．1424	23.455	4760	750270	47．022			－ 2.208	． 009	936		
76		74272．838	－ 2.2651	J．9337	32.781	4760	750270－	－119．682			－ 1101	． 324	787		
76		38593．8？ 6	－0．6127	－1．1093	73.336	4760	750270	－55．783	S		－ 1.647	－ .040	818		
70		67575．621	11.5974	－1．9，52	$11^{2} .678$	4780	75027c	43.581			－ 2.290	－． .500	1054		
76		73410． 792	C． 9895	1.3 .341	81．465	4760	$750270-$	－122．957			－ 3.522	381	789		
76		3943F．10t	－1．3476	－0．973s	55265	4840	750270	121．C17	5		－ 4454	． 525	1609		
70		45360.524	－5．1282	－1．7159	27.755	4840	750270	－43．743	5		－ 2890	1700	1615		D
70	63	38592．575	－1．5803	－1．7337	36．0．76	4840	750270	118.081	5		－4141	1025	1680		D
70		44509.251	2.5445	－0．3568	$38 .+24$	4840	750270	－47．309	5		－ 3462	485	1726		
76	64	68542．475	1s． 1575	11．1＋52	15.162	4360	756270	39．324			－16 373	－10 696	3219		B，D， 0
76		74427．710	－16．5069	－5．2370	47507	$\rightarrow 8 \mathrm{CO}$	750270－	－127．150			－6671	－ 451	1505		
70		13568．508	－15．6984	－5．2243	64．＋13	4060	750270	52．377			－6914	． 188	1364		
70		7450，0085	14．1324	11.3030	20.87	4860	750270－	－114．060			－23 405	－8444	2.317		
76		18032．030	14.8196	－J．5970	33.406	4958	750270	59．721			－389 460	13022	1736		B，D
70		23991．308	9．9889	－206487	17.207	4758	751270－	－117．438			－360 370	16351	2097		B，D
78		69462．237	2.6988	-12.4328	19.497	455月	750270	－57． 864	S		－362 147	14089	2.152		B，D
70		18082．029	0.4010	70347	38.457	4959	750270	59.721			385313	16593	2356		B，D
70		23941．308	16.4343	-17.6521	17208	4959	750270－1	－117．438			402680	13377	2332		B，D
76	65	69462.234	－10 1393	－10．5427	19.497	4959	750270	－57．864	5		397808	16523	1694		B，D
76		20897．493	－10．8777	－3．4375	62 721	4960	7502701	127.256	5		3003	－ 051	1662		
76	64	26817.091	－7．3782	0.8231	38441	$49+0$	750270	-34.264	S		8640	135	1769		
7.		32665.263	9.0644	－5 5514	18．786	4980	750270	－13．777	5		7393	－ 2234	1824		
70	04	18494． 390	2.6083	－5．5721	17． 119	4960	750270	7.874			5843	－ 2.211	1904		
76		445140.445	－2．9433	－2．1＋92	24．666	4960	750270	28.658			2408	－ 1.092	1.514		
76	$t 4$	5024.1 .843	－1．2346	－3 3443	49213	4960	750270	53.108			12011	1621	1050		B，D
76		56194.539	9.2842	12.1925	23． 364	4960	$750270-1$	115.907			2.231	－ 3095	2288		
76	45	20030．944	－12．2690	2.2448	45596	4960	750270	123.488	5		2150	280	1699		
16	45	＜6953．354	1.4414	5． $26 \mathrm{C3}$	46.400	4900	750270	－3d 435	5		1123	366	1486		
76	65	31821.113	3.2376	－0．5444	20．933	4960	$750270-$	-18.362	3		2952	677	1929		
16	05	97656．447	2.9488	－4 5399	15．381	4760	750270	3.182			7783	－ 1347	2223		
76	05	43497．994	0.4870	－8．9509	25085	4960	750270	24.457			7386	－ 546	1761		
70	65	49350.720	1.6310	6.2181	th3．414	4760	750270	44.042			2421	376	1396		
76	055	55321．049	5.0685	7.0637	25.197	4460	7502 70－1	11 ± 645			4153	－ 155	1686		
SUHM	IARY	（60 Passes）	） 90 ± 5	$92-27$	7 ± 452										

＊B－Deleted for range bias

D－Deleted for range bias drift
σ－Deleted for post－navıgation resıduals
（13 Passes Deleted）

Table D－7
 Laser Navigation Results（base run） Span 1

	UAY	StC	Fri（c）	ECR（4）	ELV	STA	SAT	ALY	v／S	Range Bas （m）	$\begin{gathered} \text { Range } \\ \text { Drift } \\ (\mathrm{km} / \text { day }) \end{gathered}$	$\begin{gathered} \text { Residuals } \\ (\mathrm{m}) \end{gathered}$	Deletion Code＊
7	－2	41154305	－0．0434	－2．4161	22.913	7067	753270	－46．476	5	－2037	334	059	
	63	34342621	-1.659°	12.7506	36516	7067	750270	117.424	5	－12 113	2558	058	D
	6S	$403 \mathrm{J4} 143$	0.2475	－4．0325	32.888	7067	750270	－49．742	S	－1047	－ 034	046	
	63	69223．662	C． 8745	－2． 3332	$34 * 10$	7067	750270	50.264		－ 527	－12051	046	
	63	751s7．t．34	2.1254	－0．3046	33.900	7067	750270	117105		－ 249	011	050	
	62	55460 917	5.7501	－2．1780	58.388	7068	753270	118.673	S	598	－． 345	042	
7	02	75886．747	0.0038	ก．7ヶ70	64781	7068	750270－	－119．179		3096	－ 416	040	
7	52	＋1349．835	－2．9210	0.0118	54.670	7069	750270	－55．471	S	－ 617	336	068	
1	65	46492．134	－3．857\％	－3．1377	44．406	7069	750270	－57．934	5	－ 660	． 059	063	
7	03	7515．2．4J4	1.3936	－1．4451	53026	7060	750270	55421		－ 1507	096	068	
	Mmary	（10 Passe	$40 \pm$	63 －1	36 ± 1	44							

Table D－8
Laser Navigation Results（base run）
Span 2

YR	u4Y	Sここ	FCA\｛ 1）	ECर（M）	）ELV	STA	SAT	AZY	N／S	$\begin{aligned} & \text { RANGE } \\ & \text { BIAS } \\ & \text { (m) } \end{aligned}$	$\begin{gathered} \text { PANGE } \\ \text { DRIFT } \\ \text { (kn/day) } \end{gathered}$	RESIDUAL （m）	DELETYON CODE＊
	04	－8372．859	－0．6538	19297	23．362	7067	750270	47．020		－4 133	467	054	
70	24	74272．989	－1 8089	） $627 t$	52.975	7067	750270－1	119．649		－ 355	－ 065	050	
76	E 5	38593．748	0.0770	－2．1155	13.377	7067	750270	－55．753	5	－ 956	039	063	
70		73410392	0.2375	－6．2105	81955	7667	$750270-1$	122．965		－ 563	048	058	
76		33735.971	－10．9453	1.3363	21994	7068	750270	115.535	5	－2．264	5454	034	D
$7{ }_{6}$	04	39651448	2.7609	$-1.3+50$	40718	7068	750270	－56 339	S	－1 353	－ 038	035	
76		38795.441	3.7034	0．4610	65428	7068	750270	－58．477	S	－ 514	． 057	037	
76		39631743	－5．7845	－1．3154	62.529	7069	750270	119.721	S	－ 331	088	070	
$7{ }^{7}$	64	14．141．806	－3．47ヶ？	－1．0170	34． 586	7069	750270	52.642		－2 446	433	055	
76		80255.931	－5．2369	5.9336	29．685	7069	$750270-1$	116．331		－1 525	－． 080	． 073	
70		73490． 572	－0．0748	－3．3703	23254	7069	750270	49.703		－1 034	－． 084	． 073	
75	55	79，91．731	0.0762	2.7462	47.535	706°	750270 －1	118．519		－ 719	－． 029	071	
SUM	HARX	（II Passe	$-93 \pm$	84	± 25								

1
N
1
1

Fig D-1 GEOS-3 Doppler Navigatıon Residuals (reference track), 1976 Days 62 to 65

Fig. D-2 GEOS-3 C-Band Navigation Resıduals (reference track), 1976 Days 62 to 63

Fig D-3 GEOS-3 Laser Navigation Residuals (reference track), 1976 Days 62 to 63

Fig. D-4 GEOS-3 Doppler Navigation Residuals (referenceltrack), 1976 Days 64 to 65

Fig D-5 GEOS-3 C-Band Navigatıon Resıduals (reference track), 1976 Days 64 to 65

1
∞
∞

Fig. D-6 GEOS-3 Laser Navigatıon Residuals (reference track), 1976 Days 64 to 65

Fig D-7 GEOS-3 Ephemeris Differences (reference backdate - reference track), 1976 Days 62 to 63

Fig D-8 GEOS-3 Ephemeris Differences (reference update - reference track),
1976 Days 64 to 65

Day 62
Day $63^{\prime}-$ - -
(numbers refer to unique number of altımetry data)

Fig. D-9 GEOS-3 Spatial Distribution of Altimeter Data, Altimeter Coverage 1976 Days 62 and 63

$\begin{array}{ll}\text { - } & \text { Day } 64\end{array} \quad$------ \quad Day 65

Fig. D-10 GEOS-3 Spatial Distribution of Altımeter Data, Altımeter Coverage 1976 Days 64 and 65

1

Fig D-11 GEOS-3 Doppler Residuals (backdate from two passes, station 4150 with altimeter track), 1976 Days 62 to 63

Fig. D-12 GEOS-3 Doppler Residuals (update from two passes, station 4150 with altımeter track), 1976 Days 63 to 65

[^5]
[^0]: * The navigation solution philosophy is discussed in Section 3.0.

[^1]: * CBD - C-band range

 LSR - Iaser range

[^2]: ECA - along-track érror
 ECR - slant-range error
 ECT - total navigation error
 H - radial error
 L - along-track error
 C - cross-track error
 D - total error

[^3]: A - fit a, e, i, Ω, ω, M, bias drift
 B - fit $a, e, i, \Omega, \omega, M$
 C-fit a, e
 D-fit a, e, bias, drift
 S1 - 1976 days 62 to 63
 S2 - 1976 days 64 to 65
 $\mathrm{R}_{0}-6378166 \mathrm{~km}$

[^4]: *Pass direction $=\mathrm{S}$ - south going, otherwise a north going pass
 **Pass weight <02 due to N navigation weight, σ noise weight, E - elevation weight

[^5]: *For sale by the National Technical Information Service, Springfield, Virginaa 22151

