158 research outputs found

    Rapid and Accurate Multiple Testing Correction and Power Estimation for Millions of Correlated Markers

    Get PDF
    With the development of high-throughput sequencing and genotyping technologies, the number of markers collected in genetic association studies is growing rapidly, increasing the importance of methods for correcting for multiple hypothesis testing. The permutation test is widely considered the gold standard for accurate multiple testing correction, but it is often computationally impractical for these large datasets. Recently, several studies proposed efficient alternative approaches to the permutation test based on the multivariate normal distribution (MVN). However, they cannot accurately correct for multiple testing in genome-wide association studies for two reasons. First, these methods require partitioning of the genome into many disjoint blocks and ignore all correlations between markers from different blocks. Second, the true null distribution of the test statistic often fails to follow the asymptotic distribution at the tails of the distribution. We propose an accurate and efficient method for multiple testing correction in genome-wide association studies—SLIDE. Our method accounts for all correlation within a sliding window and corrects for the departure of the true null distribution of the statistic from the asymptotic distribution. In simulations using the Wellcome Trust Case Control Consortium data, the error rate of SLIDE's corrected p-values is more than 20 times smaller than the error rate of the previous MVN-based methods' corrected p-values, while SLIDE is orders of magnitude faster than the permutation test and other competing methods. We also extend the MVN framework to the problem of estimating the statistical power of an association study with correlated markers and propose an efficient and accurate power estimation method SLIP. SLIP and SLIDE are available at http://slide.cs.ucla.edu

    Straightforward Inference of Ancestry and Admixture Proportions through Ancestry-Informative Insertion Deletion Multiplexing

    Get PDF
    Ancestry-informative markers (AIMs) show high allele frequency divergence between different ancestral or geographically distant populations. These genetic markers are especially useful in inferring the likely ancestral origin of an individual or estimating the apportionment of ancestry components in admixed individuals or populations. The study of AIMs is of great interest in clinical genetics research, particularly to detect and correct for population substructure effects in case-control association studies, but also in population and forensic genetics studies

    A Robust Statistical Method for Association-Based eQTL Analysis

    Get PDF
    Background: It has been well established that theoretical kernel for recently surging genome-wide association study (GWAS) is statistical inference of linkage disequilibrium (LD) between a tested genetic marker and a putative locus affecting a disease trait. However, LD analysis is vulnerable to several confounding factors of which population stratification is the most prominent. Whilst many methods have been proposed to correct for the influence either through predicting the structure parameters or correcting inflation in the test statistic due to the stratification, these may not be feasible or may impose further statistical problems in practical implementation. Methodology: We propose here a novel statistical method to control spurious LD in GWAS from population structure by incorporating a control marker into testing for significance of genetic association of a polymorphic marker with phenotypic variation of a complex trait. The method avoids the need of structure prediction which may be infeasible or inadequate in practice and accounts properly for a varying effect of population stratification on different regions of the genome under study. Utility and statistical properties of the new method were tested through an intensive computer simulation study and an association-based genome-wide mapping of expression quantitative trait loci in genetically divergent human populations. Results/Conclusions: The analyses show that the new method confers an improved statistical power for detecting genuin

    Comprehensive Evaluation of One-Carbon Metabolism Pathway Gene Variants and Renal Cell Cancer Risk

    Get PDF
    Folate and one-carbon metabolism are linked to cancer risk through their integral role in DNA synthesis and methylation. Variation in one-carbon metabolism genes, particularly MTHFR, has been associated with risk of a number of cancers in epidemiologic studies, but little is known regarding renal cancer.Tag single nucleotide polymorphisms (SNPs) selected to produce high genomic coverage of 13 gene regions of one-carbon metabolism (ALDH1L1, BHMT, CBS, FOLR1, MTHFR, MTR, MTRR, SHMT1, SLC19A1, TYMS) and the closely associated glutathione synthesis pathway (CTH, GGH, GSS) were genotyped for 777 renal cell carcinoma (RCC) cases and 1,035 controls in the Central and Eastern European Renal Cancer case-control study. Associations of individual SNPs (n = 163) with RCC risk were calculated using unconditional logistic regression adjusted for age, sex and study center. Minimum p-value permutation (Min-P) tests were used to identify gene regions associated with risk, and haplotypes were evaluated within these genes.The strongest associations with RCC risk were observed for SLC19A1 (P(min-P) = 0.03) and MTHFR (P(min-P) = 0.13). A haplotype consisting of four SNPs in SLC19A1 (rs12483553, rs2838950, rs2838951, and rs17004785) was associated with a 37% increased risk (p = 0.02), and exploratory stratified analysis suggested the association was only significant among those in the lowest tertile of vegetable intake.To our knowledge, this is the first study to comprehensively examine variation in one-carbon metabolism genes in relation to RCC risk. We identified a novel association with SLC19A1, which is important for transport of folate into cells. Replication in other populations is required to confirm these findings

    The GABA transporter 1 (SLC6A1): a novel candidate gene for anxiety disorders

    Get PDF
    Recent evidence suggests that the GABA transporter 1 (GAT-1; SLC6A1) plays a role in the pathophysiology and treatment of anxiety disorders. In order to understand the impact of genetic variation within SLC6A1 on pathological anxiety, we performed a case–control association study with anxiety disorder patients with and without syndromal panic attacks. Using the method of sequential addition of cases, we found that polymorphisms in the 5′ flanking region of SLC6A1 are highly associated with anxiety disorders when considering the severity of syndromal panic attacks as phenotype covariate. Analysing the effect size of the association, we observed a constant increase in the odds ratio for disease susceptibility with an increase in panic severity (OR ~ 2.5 in severely affected patients). Nominally significant association effects were observed considering the entire patient sample. These data indicate a high load of genetic variance within SLC6A1 on pathological anxiety and highlight GAT-1 as a promising target for treatment of anxiety disorders with panic symptoms

    Suffocating cancer: hypoxia-associated epimutations as targets for cancer therapy

    Get PDF
    Lower than normal levels of oxygen (hypoxia) is a hallmark of all solid tumours rendering them frequently resistant to both radiotherapy and chemotherapy regimes. Furthermore, tumour hypoxia and activation of the hypoxia inducible factor (HIF) transcriptional pathway is associated with poorer prognosis. Driven by both genetic and epigenetic changes, cancer cells do not only survive but thrive in hypoxic conditions. Detailed knowledge of these changes and their functional consequences is of great clinical utility and is already helping to determine phenotypic plasticity, histological tumour grading and overall prognosis and survival stratification in several cancer types. As epigenetic changes - contrary to genetic changes - are potentially reversible, they may prove to be potent therapeutic targets to add to the cancer physicians' armorarium in the future

    Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked FilesOver the past decade genome-wide association studies (GWAS) have been applied to aid in the understanding of the biology of traits. The success of this approach is governed by the underlying effect sizes carried by the true risk variants and the corresponding statistical power to observe such effects given the study design and sample size under investigation. Previous ASD GWAS have identified genome-wide significant (GWS) risk loci; however, these studies were of only of low statistical power to identify GWS loci at the lower effect sizes (odds ratio (OR) <1.15).We conducted a large-scale coordinated international collaboration to combine independent genotyping data to improve the statistical power and aid in robust discovery of GWS loci. This study uses genome-wide genotyping data from a discovery sample (7387 ASD cases and 8567 controls) followed by meta-analysis of summary statistics from two replication sets (7783 ASD cases and 11359 controls; and 1369 ASD cases and 137308 controls).We observe a GWS locus at 10q24.32 that overlaps several genes including PITX3, which encodes a transcription factor identified as playing a role in neuronal differentiation and CUEDC2 previously reported to be associated with social skills in an independent population cohort. We also observe overlap with regions previously implicated in schizophrenia which was further supported by a strong genetic correlation between these disorders (Rg = 0.23; P = 9 × 10(-6)). We further combined these Psychiatric Genomics Consortium (PGC) ASD GWAS data with the recent PGC schizophrenia GWAS to identify additional regions which may be important in a common neurodevelopmental phenotype and identified 12 novel GWS loci. These include loci previously implicated in ASD such as FOXP1 at 3p13, ATP2B2 at 3p25.3, and a 'neurodevelopmental hub' on chromosome 8p11.23.This study is an important step in the ongoing endeavour to identify the loci which underpin the common variant signal in ASD. In addition to novel GWS loci, we have identified a significant genetic correlation with schizophrenia and association of ASD with several neurodevelopmental-related genes such as EXT1, ASTN2, MACROD2, and HDAC4.National Institutes of Mental Health (NIMH, USA) ACE Network Autism Genetic Resource Exchange (AGRE) is a program of Autism Speaks (USA) The Autism Genome Project (AGP) from Autism Speaks (USA) Canadian Institutes of Health Research (CIHR), Genome Canada Health Research Board (Ireland) Hilibrand Foundation (USA) Medical Research Council (UK) National Institutes of Health (USA) Ontario Genomics Institute University of Toronto McLaughlin Centre Simons Foundation Johns Hopkins Autism Consortium of Boston NLM Family foundation National Institute of Health grants National Health Medical Research Council Scottish Rite Spunk Fund, Inc. Rebecca and Solomon Baker Fund APEX Foundation National Alliance for Research in Schizophrenia and Affective Disorders (NARSAD) endowment fund of the Nancy Pritzker Laboratory (Stanford) Autism Society of America Janet M. Grace Pervasive Developmental Disorders Fund The Lundbeck Foundation universities and university hospitals of Aarhus and Copenhagen Stanley Foundation Centers for Disease Control and Prevention (CDC) Netherlands Scientific Organization Dutch Brain Foundation VU University Amsterdam Trinity Centre for High Performance Computing through Science Foundation Ireland Autism Genome Project (AGP) from Autism Speak

    Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders

    Get PDF
    Autism spectrum disorder (ASD) risk is influenced by common polygenic and de novo variation. We aimed to clarify the influence of polygenic risk for ASD and to identify subgroups of ASD cases, including those with strongly acting de novo variants, in which polygenic risk is relevant. Using a novel approach called the polygenic transmission disequilibrium test and data from 6,454 families with a child with ASD, we show that polygenic risk for ASD, schizophrenia, and greater educational attainment is over-transmitted to children with ASD. These findings hold independent of proband IQ. We find that polygenic variation contributes additively to risk in ASD cases who carry a strongly acting de novo variant. Lastly, we show that elements of polygenic risk are independent and differ in their relationship with phenotype. These results confirm that the genetic influences on ASD are additive and suggest that they create risk through at least partially distinct etiologic pathways
    corecore