58 research outputs found

    Abrogation of Junctional Adhesion Molecule-A Expression Induces Cell Apoptosis and Reduces Breast Cancer Progression

    Get PDF
    Intercellular junctions promote homotypic cell to cell adhesion and transfer intracellular signals which control cell growth and apoptosis. Junctional adhesion molecule-A (JAM-A) is a transmembrane immunoglobulin located at tight junctions of normal epithelial cells of mammary ducts and glands. In the present paper we show that JAM-A acts as a survival factor for mammary carcinoma cells. JAM-A null mice expressing Polyoma Middle T under MMTV promoter develop significantly smaller mammary tumors than JAM-A positive mice. Angiogenesis and inflammatory or immune infiltrate were not statistically modified in absence of JAM-A but tumor cell apoptosis was significantly increased. Tumor cells isolated from JAM-A null mice or 4T1 cells incubated with JAM-A blocking antibodies showed reduced growth and increased apoptosis which paralleled altered junctional architecture and adhesive function. In a breast cancer clinical data set, tissue microarray data show that JAM-A expression correlates with poor prognosis. Gene expression analysis of mouse tumor samples showed a correlation between genes enriched in human G3 tumors and genes over expressed in JAM-A +/+ mammary tumors. Conversely, genes enriched in G1 human tumors correlate with genes overexpressed in JAM-A−/− tumors. We conclude that down regulation of JAM-A reduces tumor aggressive behavior by increasing cell susceptibility to apoptosis. JAM-A may be considered a negative prognostic factor and a potential therapeutic target

    Endothelial cells use dynamic actin to facilitate lymphocyte transendothelial migration and maintain the monolayer barrier

    Get PDF
    The vascular endothelium is a highly dynamic structure, and the integrity of its barrier function is tightly regulated. Normally impenetrable to cells, the endothelium actively assists lymphocytes to exit the bloodstream during inflammation. The actin cytoskeleton of the endothelial cell (EC) is known to facilitate transmigration, but the cellular and molecular mechanisms are not well understood. Here we report that actin assembly in the EC, induced by Arp2/3 complex under control of WAVE2, is important for several steps in the process of transmigration. To begin transmigration, ECs deploy actin-based membrane protrusions that create a cup-shaped docking structure for the lymphocyte. We found that docking structure formation involves the localization and activation of Arp2/3 complex by WAVE2. The next step in transmigration is creation of a migratory pore, and we found that endothelial WAVE2 is needed for lymphocytes to follow a transcellular route through an EC. Later, ECs use actin-based protrusions to close the gap behind the lymphocyte, which we discovered is also driven by WAVE2. Finally, we found that ECs in resting endothelial monolayers use lamellipodial protrusions dependent on WAVE2 to form and maintain contacts and junctions between cells

    Tertiary Lymphoid Organs in Rheumatoid Arthritis.

    Get PDF
    Rheumatoid Arthritis (RA) is a chronic systemic autoimmune disease. RA mainly affects the joints, with inflammation of the synovial membrane, characterized by hyperplasia, neo-angiogenesis, and immune cell infiltration that drives local inflammation and, if untreated, can lead to joint destruction and disability. In parallel to the well-known clinical heterogeneity, the underlying synovitis can also be significantly heterogeneous. In particular, in about 40% of patients with RA, synovitis is characterized by a dense lymphocytic infiltrate that can acquire the features of fully functional tertiary lymphoid organs (TLO). These structures amplify autoimmunity and inflammation locally associated with worse prognosis and potential implications for treatment response. Here, we will review the current knowledge on TLO in RA, with a focus on their pathogenetic and clinical relevance

    The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo

    No full text
    The migration of neutrophils into inflamed tissues is a fundamental component of innate immunity. A decisive step in this process is the polarized migration of blood neutrophils through endothelial cells (ECs) lining the venular lumen (transendothelial migration (TEM)) in a luminal-to-abluminal direction. By real-time confocal imaging, we found that neutrophils had disrupted polarized TEM ('hesitant' and 'reverse') in vivo. We noted these events in inflammation after ischemia-reperfusion injury, characterized by lower expression of junctional adhesion molecule C (JAM-C) at EC junctions, and they were enhanced by blockade or genetic deletion of JAM-C in ECs. Our results identify JAM-C as a key regulator of polarized neutrophil TEM in vivo and suggest that reverse TEM of neutrophils can contribute to the dissemination of systemic inflammation

    DNA methylation regulates the expression of CXCL12 in rheumatoid arthritis synovial fibroblasts

    Full text link
    In the search for specific genes regulated by DNA methylation in rheumatoid arthritis (RA), we investigated the expression of CXCL12 in synovial fibroblasts (SFs) and the methylation status of its promoter and determined its contribution to the expression of matrix metalloproteinases (MMPs). DNA was isolated from SFs and methylation was analyzed by bisulfite sequencing and McrBC assay. CXCL12 protein was quantified by enzyme-linked immunosorbent assay before and after treatment with 5-azacytidine. RASFs were transfected with CXCR7-siRNA and stimulated with CXCL12. Expression of MMPs was analyzed by real-time PCR. Basal expression of CXCL12 was higher in RASFs than osteoarthritis (OA) SFs. 5-azacytidine demethylation increased the expression of CXCL12 and reduced the methylation of CpG nucleotides. A lower percentage of CpG methylation was found in the CXCL12 promoter of RASFs compared with OASFs. Overall, we observed a significant correlation in the mRNA expression and the CXCL12 promoter DNA methylation. Stimulation of RASFs with CXCL12 increased the expression of MMPs. CXCR7 but not CXCR4 was expressed and functional in SFs. We show here that RASFs produce more CXCL12 than OASFs due to promoter methylation changes and that stimulation with CXCL12 activates MMPs via CXCR7 in SFs. Thereby we describe an endogenously activated pathway in RASFs, which promotes joint destruction

    Dynamic trafficking and turnover of JAM-C is essential for endothelial cell migration

    No full text
    Junctional complexes between endothelial cells form a dynamic barrier that hinders passive diffusion of blood constituents into interstitial tissues. Remodelling of junctions is an essential process during leukocyte trafficking, vascular permeability, and angiogenesis. However, for many junctional proteins, the mechanisms of junctional remodelling have yet to be determined. Here, we used receptor mutagenesis, horseradish peroxidase (HRP), and ascorbate peroxidase 2 (APEX-2) proximity labelling, alongside light and electron microscopy (EM), to map the intracellular trafficking routes of junctional adhesion molecule-C (JAM-C). We found that JAM-C cotraffics with receptors associated with changes in permeability such as vascular endothelial cadherin (VE-Cadherin) and neuropilin (NRP)-1 and 2, but not with junctional proteins associated with the transmigration of leukocytes. Dynamic JAM-C trafficking and degradation are necessary for junctional remodelling during cell migration and angiogenesis. By identifying new potential trafficking machinery, we show that a key point of regulation is the ubiquitylation of JAM-C by the E3 ligase Casitas B-lineage lymphoma (CBL), which controls the rate of trafficking versus lysosomal degradation.TDN, CS, and KBK were funded by an MRC project grant MR/M019179/1. KBK also received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° 608765. AB and TPM were funded by QMUL. SN was funded by a Wellcome Trust investigator award 098291/Z/12/Z. MA was funded by Canceropôle PACA (Valo-Paca 2016) and French National Institute of Cancer (Inca, PRT-K16, #2017-24). PC and VR were funded by BBSRC (BB/M006174/1) and the Barts and The London Charity (297/2249). IJW was funded by an MRC LMCB core grant award MC_U12266B
    • …
    corecore