46,871 research outputs found
The Onset of Intermittency in Stochastic Burgers Hydrodynamics
We study the onset of intermittency in stochastic Burgers hydrodynamics, as
characterized by the statistical behavior of negative velocity gradient
fluctuations. The analysis is based on the response functional formalism, where
specific velocity configurations - the viscous instantons - are assumed to play
a dominant role in modeling the left tails of velocity gradient probability
distribution functions. We find, as expected on general grounds, that the field
theoretical approach becomes meaningful in practice only if the effects of
fluctuations around instantons are taken into account. Working with a
systematic cumulant expansion, it turns out that the integration of
fluctuations yields, in leading perturbative order, to an effective description
of the Burgers stochastic dynamics given by the renormalization of its
associated heat kernel propagator and the external force-force correlation
function.Comment: 10 pages, 6 figure
The Equivalence Principle Revisited
A precise formulation of the strong Equivalence Principle is essential to the
understanding of the relationship between gravitation and quantum mechanics.
The relevant aspects are reviewed in a context including General Relativity,
but allowing for the presence of torsion. For the sake of brevity, a concise
statement is proposed for the Principle: "An ideal observer immersed in a
gravitational field can choose a reference frame in which gravitation goes
unnoticed". This statement is given a clear mathematical meaning through an
accurate discussion of its terms. It holds for ideal observers (time-like
smooth non-intersecting curves), but not for real, spatially extended
observers. Analogous results hold for gauge fields. The difference between
gravitation and the other fundamental interactions comes from their distinct
roles in the equation of force.Comment: RevTeX, 18 pages, no figures, to appear in Foundations of Physic
Quantum spin circulator in Y junctions of Heisenberg chains
We show that a quantum spin circulator, a nonreciprocal device that routes
spin currents without any charge transport, can be achieved in Y junctions of
identical spin- Heisenberg chains coupled by a chiral three-spin
interaction. Using bosonization, boundary conformal field theory, and
density-matrix renormalization group simulations, we find that a chiral fixed
point with maximally asymmetric spin conductance arises at a critical point
separating a regime of disconnected chains from a spin-only version of the
three-channel Kondo effect. We argue that networks of spin-chain Y junctions
provide a controllable approach to construct long-sought chiral spin liquid
phases.Comment: 9 pages, 3 figure
Orbital multicriticality in spin gapped quasi-1D antiferromagnets
Motivated by the quasi-1D antiferromagnet CaVO, we explore
spin-orbital systems in which the spin modes are gapped but orbitals are near a
macroscopically degenerate classical transition. Within a simplified model we
show that gapless orbital liquid phases possessing power-law correlations may
occur without the strict condition of a continuous orbital symmetry. For the
model proposed for CaVO, we find that an orbital phase with coexisting
order parameters emerges from a multicritical point. The effective orbital
model consists of zigzag-coupled transverse field Ising chains. The
corresponding global phase diagram is constructed using field theory methods
and analyzed near the multicritical point with the aid of an exact solution of
a zigzag XXZ model.Comment: 9 page
The planetary nebula nature and properties of IRAS18197-1118
IRAS18197-1118 is a stellar-like object that has been classified as a
planetary nebula from its radio continuum emission and high [SIII]9532 to
Paschen9 line intensity ratio, as derived from direct images. We present
intermediate- and high-resolution, optical spectroscopy, VLA 8.46 GHz radio
continuum data, and narrow-band optical images of IRAS18197-1118 aimed at
confirming its planetary nebula nature, and analyzing its properties. The
optical spectrum shows that IRAS18197-1118 is a medium-excitation planetary
nebula suffering a high extinction (c(H_beta) ~3.37). The optical images do not
resolve the object but the 8.46 GHz image reveals an elliptical shell of
~2.7x1.6 arcsec^2 in size, a compact central nebular region, and possible
bipolar jet-like features, indicating several ejection events. The existence of
a compact central nebula makes IRAS18197-1118 singular because this kind of
structure is observed in a few PNe only. An expansion velocity ~20 km/s and a
systemic velocity (LSR) ~+95 km/s are obtained for the object. An electron
density of ~3.4x10^4 cm-3 and an ionized mass of ~2.1x10^-2 M_sun are deduced
from the 8.46 GHz radio continuum data for an estimated statistical distance of
6 kpc. Helium abundance is high but nitrogen is not enriched, which is not
consistently reproduced by evolutionary models, suggesting different abundances
in the elliptical shell and central region. The properties of IRAS18197-1118
indicate a relatively young planetary nebula, favor a distance of >~6 kpc, and
strongly suggest that it is an inner-disc planetary nebula.Comment: Accepted by MNRAS. 8 pages, 5 figures, 4 table
Angular Momentum of the BTZ Black Hole in the Teleparallel Geometry
We carry out the Hamiltonian formulation of the three- dimensional
gravitational teleparallelism without imposing the time gauge condition, by
rigorously performing the Legendre transform. Definition of the gravitational
angular momentum arises by suitably interpreting the integral form of the
constraint equation Gama^ik=0 as an angular momentum equation. The
gravitational angular momentum is evaluated for the gravitational field of a
rotating BTZ black hole.Comment: 17 pages, no figures, v2: some misprints corrected, Ref.s added, Eq.s
revised, submitted to General Relativity and Gravitatio
Boundary versus bulk behavior of time-dependent correlation functions in one-dimensional quantum systems
We study the influence of reflective boundaries on time-dependent responses
of one-dimensional quantum fluids at zero temperature beyond the low-energy
approximation. Our analysis is based on an extension of effective mobile
impurity models for nonlinear Luttinger liquids to the case of open boundary
conditions. For integrable models, we show that boundary autocorrelations
oscillate as a function of time with the same frequency as the corresponding
bulk autocorrelations. This frequency can be identified as the band edge of
elementary excitations. The amplitude of the oscillations decays as a power law
with distinct exponents at the boundary and in the bulk, but boundary and bulk
exponents are determined by the same coupling constant in the mobile impurity
model. For nonintegrable models, we argue that the power-law decay of the
oscillations is generic for autocorrelations in the bulk, but turns into an
exponential decay at the boundary. Moreover, there is in general a nonuniversal
shift of the boundary frequency in comparison with the band edge of bulk
excitations. The predictions of our effective field theory are compared with
numerical results obtained by time-dependent density matrix renormalization
group (tDMRG) for both integrable and nonintegrable critical spin- chains
with , and .Comment: 20 pages, 12 figure
Gravitomagnetic Moments of the Fundamental Fields
The quadratic form of the Dirac equation in a Riemann spacetime yields a
gravitational gyromagnetic ratio \kappa_S = 2 for the interaction of a Dirac
spinor with curvature. A gravitational gyromagnetic ratio \kappa_S = 1 is also
found for the interaction of a vector field with curvature. It is shown that
the Dirac equation in a curved background can be obtained as the square--root
of the corresponding vector field equation only if the gravitational
gyromagnetic ratios are properly taken into account.Comment: 8 pages, RevTeX Style, no figures, changed presentation -- now
restricted to fields of spin 0, 1/2 and 1 -- some references adde
Instantons and Fluctuations in a Lagrangian Model of Turbulence
We perform a detailed analytical study of the Recent Fluid Deformation (RFD)
model for the onset of Lagrangian intermittency, within the context of the
Martin-Siggia-Rose-Janssen-de Dominicis (MSRJD) path integral formalism. The
model is based, as a key point, upon local closures for the pressure Hessian
and the viscous dissipation terms in the stochastic dynamical equations for the
velocity gradient tensor. We carry out a power counting hierarchical
classification of the several perturbative contributions associated to
fluctuations around the instanton-evaluated MSRJD action, along the lines of
the cumulant expansion. The most relevant Feynman diagrams are then integrated
out into the renormalized effective action, for the computation of velocity
gradient probability distribution functions (vgPDFs). While the subleading
perturbative corrections do not affect the global shape of the vgPDFs in an
appreciable qualitative way, it turns out that they have a significant role in
the accurate description of their non-Gaussian cores.Comment: 32 pages, 9 figure
- …
