1,041 research outputs found
Anomalous Behavior of Ru for Catalytic Oxidation: A Theoretical Study of the Catalytic Reaction CO + 1/2 O_2 --> CO_2
Recent experiments revealed an anomalous dependence of carbon monoxide
oxidation at Ru(0001) on oxygen pressure and a particularly high reaction rate.
Below we report density functional theory calculations of the energetics and
reaction pathways of the speculated mechanism. We will show that the
exceptionally high rate is actuated by a weakly but nevertheless well bound
(1x1) oxygen adsorbate layer. Furthermore it is found that reactions via
scattering of gas-phase CO at the oxygen covered surface may play an important
role. Our analysis reveals, however, that reactions via adsorbed CO molecules
(the so-called Langmuir-Hinshelwood mechanism) dominate.Comment: 5 pages, 4 figures, Phys. Rev. Letters, Feb. 1997, in prin
Partial encapsulation of Pd particles by reduced ceria-zirconia
Direct observation of metal-oxide interfaces with atomic resolution can be achieved by cross-sectional high-resolution transmission electron microscopy (HRTEM). Using this approach to study the response of a model, single-crystal thin film automotive exhaust-gas catalyst, Pd particles supported on the (111) ceria-zirconia (CZO) surface, to a redox cycle, we have found two distinct processes for the partial encapsulation of the Pd particles by the reduced CZO surface that depend on their relative crystallographic orientations. In the case of the preferred orientation found for Pd particles on CZO, Pd(111)[110]//CZO(111)[110]Pd(111)[110]ââCZO(111)[110], a flat and sharp metal/oxide interface was maintained upon reduction, while ceria-zirconia from the adjacent surface tended to accumulate on and around the Pd particle. In rare cases, Pd particles with other orientations tended to sink into the oxide support upon reduction. Possible mechanisms for these encapsulation processes are proposed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87836/2/201915_1.pd
Composition, structure and stability of RuO_2(110) as a function of oxygen pressure
Using density-functional theory (DFT) we calculate the Gibbs free energy to
determine the lowest-energy structure of a RuO_2(110) surface in thermodynamic
equilibrium with an oxygen-rich environment. The traditionally assumed
stoichiometric termination is only found to be favorable at low oxygen chemical
potentials, i.e. low pressures and/or high temperatures. At realistic O
pressure, the surface is predicted to contain additional terminal O atoms.
Although this O excess defines a so-called polar surface, we show that the
prevalent ionic model, that dismisses such terminations on electrostatic
grounds, is of little validity for RuO_2(110). Together with analogous results
obtained previously at the (0001) surface of corundum-structured oxides, these
findings on (110) rutile indicate that the stability of non-stoichiometric
terminations is a more general phenomenon on transition metal oxide surfaces.Comment: 12 pages including 5 figures. Submitted to Phys. Rev. B. Related
publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
How Exposures to Biologics Influence the Induction and Incidence of Asthma
A number of environmental factors can affect the development and severity of allergy and asthma; however, it can be argued that the most significant inhaled agents that modulate the development of these conditions are biologics. Sensitization to environmental allergens is an important risk factor for the development of asthma. Innate immune responses are often mediated by receptors on mononuclear cells whose primary ligands arise from microorganisms. Many pathogens, especially viruses, target epithelial cells and affect the host immune response to those pathogens. The acquired immune response to an allergen is influenced by the nature of the innate immune system. Products of innate immune responses to microbes promote T(H)1-acquired responses. In the absence of T(H)1 responses, T(H)2 responses can dominate. Central to T(H)1/T(H)2 balance is the composition of contaminants that derive from microbes. In this review we examine the biology of the response to allergens, viruses, and bacterial products in the context of the development of allergy and asthma
Study of Atmospheric Pollution Scavenging: Eighteenth Progress Report
published or submitted for publicationis peer reviewedOpe
Composition and structure of the RuO2(110) surface in an O2 and CO environment: implications for the catalytic formation of CO2
The phase diagram of surface structures for the model catalyst RuO2(110) in
contact with a gas environment of O2 and CO is calculated by density-functional
theory and atomistic thermodynamics. Adsorption of the reactants is found to
depend crucially on temperature and partial pressures in the gas phase.
Assuming that a catalyst surface under steady-state operation conditions is
close to a constrained thermodynamic equilibrium, we are able to rationalize a
number of experimental findings on the CO oxidation over RuO2(110). We also
calculated reaction pathways and energy barriers. Based on the various results
the importance of phase coexistence conditions is emphasized as these will lead
to an enhanced dynamics at the catalyst surface. Such conditions may actuate an
additional, kinetically controlled reaction mechanism on RuO2(110).Comment: 12 pages including 8 figure files. Submitted to Phys. Rev. B. Related
publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
Surface Core Level Shifts of Clean and Oxygen Covered Ru(0001)
We have performed high resolution XPS experiments of the Ru(0001) surface,
both clean and covered with well-defined amounts of oxygen up to 1 ML coverage.
For the clean surface we detected two distinct components in the Ru 3d_{5/2}
core level spectra, for which a definite assignment was made using the high
resolution Angle-Scan Photoelectron Diffraction approach. For the p(2x2),
p(2x1), (2x2)-3O and (1x1)-O oxygen structures we found Ru 3d_{5/2} core level
peaks which are shifted up to 1 eV to higher binding energies. Very good
agreement with density functional theory calculations of these Surface Core
Level Shifts (SCLS) is reported. The overriding parameter for the resulting Ru
SCLSs turns out to be the number of directly coordinated O atoms. Since the
calculations permit the separation of initial and final state effects, our
results give valuable information for the understanding of bonding and
screening at the surface, otherwise not accessible in the measurement of the
core level energies alone.Comment: 16 pages including 10 figures. Submitted to Phys. Rev. B. Related
publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
Stability of sub-surface oxygen at Rh(111)
Using density-functional theory (DFT) we investigate the incorporation of
oxygen directly below the Rh(111) surface. We show that oxygen incorporation
will only commence after nearly completion of a dense O adlayer (\theta_tot =
1.0 monolayer) with O in the fcc on-surface sites. The experimentally suggested
octahedral sub-surface site occupancy, inducing a site-switch of the on-surface
species from fcc to hcp sites, is indeed found to be a rather low energy
structure. Our results indicate that at even higher coverages oxygen
incorporation is followed by oxygen agglomeration in two-dimensional
sub-surface islands directly below the first metal layer. Inside these islands,
the metastable hcp/octahedral (on-surface/sub-surface) site combination will
undergo a barrierless displacement, introducing a stacking fault of the first
metal layer with respect to the underlying substrate and leading to a stable
fcc/tetrahedral site occupation. We suggest that these elementary steps,
namely, oxygen incorporation, aggregation into sub-surface islands and
destabilization of the metal surface may be more general and precede the
formation of a surface oxide at close-packed late transition metal surfaces.Comment: 9 pages including 9 figure files. Submitted to Phys. Rev. B. Related
publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
- âŠ