55 research outputs found
Antibodies to a Full-Length VAR2CSA Immunogen Are Broadly Strain-Transcendent but Do Not Cross-Inhibit Different Placental-Type Parasite Isolates
The high molecular weight, multidomain VAR2CSA protein mediating adhesion of Plasmodium falciparum-infected erythrocytes in the placenta is the leading candidate for a pregnancy malaria vaccine. However, it has been difficult so far to generate strong and consistent adhesion blocking antibody responses against most single-domain VAR2CSA immunogens. Recent advances in expression of the full-length recombinant protein showed it binds with much greater specificity and affinity to chondroitin sulphate A (CSA) than individual VAR2CSA domains. This raises the possibility that a specific CSA binding pocket(s) is formed in the full length antigen and could be an important target for vaccine development. In this study, we compared the immunogenicity of a full-length VAR2CSA recombinant protein containing all six Duffy binding-like (DBL) domains to that of a three-domain construct (DBL4-6) in mice and rabbits. Animals immunized with either immunogen acquired antibodies reacting with several VAR2CSA individual domains by ELISA, but antibody responses against the highly conserved DBL4 domain were weaker in animals immunized with full-length DBL1-6 recombinant protein compared to DBL4-6 recombinant protein. Both immunogens induced cross-reactive antibodies to several heterologous CSA-binding parasite lines expressing different VAR2CSA orthologues. However, antibodies that inhibited adhesion of parasites to CSA were only elicited in rabbits immunized with full-length immunogen and inhibition was restricted to the homologous CSA-binding parasite. These findings demonstrate that partial and full-length VAR2CSA immunogens induce cross-reactive antibodies, but inhibitory antibody responses to full-length immunogen were highly allele-specific and variable between animal species
Antibodies That Induce Phagocytosis of Malaria Infected Erythrocytes: Effect of HIV Infection and Correlation with Clinical Outcomes
HIV infection increases the burden of disease of malaria in pregnancy, in part by impairing the development of immunity. We measured total IgG and phagocytic antibodies against variant surface antigens of placental-type CS2 parasites in 187 secundigravidae (65% HIV infected). In women with placental malaria infection, phagocytic antibodies to CS2VSA were decreased in the presence of HIV (pโ=โ0.011) and correlated positively with infant birth weight (coefโ=โ3.57, pโ=โ0.025), whereas total IgG to CS2VSA did not. Phagocytic antibodies to CS2VSA are valuable tools to study acquired immunity to malaria in the context of HIV co-infection. Secundigravidae may be an informative group for identification of correlates of immunity
The kinetics of antibody binding to Plasmodium falciparum VAR2CSA PfEMP1 antigen and modelling of PfEMP1 antigen packing on the membrane knobs
<p>Abstract</p> <p>Background</p> <p>Infected humans make protective antibody responses to the PfEMP1 adhesion antigens exported by <it>Plasmodium falciparum </it>parasites to the erythrocyte membrane, but little is known about the kinetics of this antibody-receptor binding reaction or how the topology of PfEMP1 on the parasitized erythrocyte membrane influences antibody association with, and dissociation from, its antigenic target.</p> <p>Methods</p> <p>A Quartz Crystal Microbalance biosensor was used to measure the association and dissociation kinetics of VAR2CSA PfEMP1 binding to human monoclonal antibodies. Immuno-fluorescence microscopy was used to visualize antibody-mediated adhesion between the surfaces of live infected erythrocytes and atomic force microscopy was used to obtain higher resolution images of the membrane knobs on the infected erythrocyte to estimate knob surface areas and model VAR2CSA packing density on the knob.</p> <p>Results</p> <p>Kinetic analysis indicates that antibody dissociation from the VAR2CSA PfEMP1 antigen is extremely slow when there is a high avidity interaction. High avidity binding to PfEMP1 antigens on the surface of <it>P. falciparum</it>-infected erythrocytes in turn requires bivalent cross-linking of epitopes positioned within the distance that can be bridged by antibody. Calculations of the surface area of the knobs and the possible densities of PfEMP1 packing on the knobs indicate that high-avidity cross-linking antibody reactions are constrained by the architecture of the knobs and the large size of PfEMP1 molecules.</p> <p>Conclusions</p> <p>High avidity is required to achieve the strongest binding to VAR2CSA PfEMP1, but the structures that display PfEMP1 also tend to inhibit cross-linking between PfEMP1 antigens, by holding many binding epitopes at distances beyond the 15-18 nm sweep radius of an antibody. The large size of PfEMP1 will also constrain intra-knob cross-linking interactions. This analysis indicates that effective vaccines targeting the parasite's vulnerable adhesion receptors should primarily induce strongly adhering, high avidity antibodies whose association rate constant is less important than their dissociation rate constant.</p
Placental Malaria is associated with reduced early life weight development of affected children independent of low birth weight
<p>Abstract</p> <p>Background</p> <p>Infection with <it>Plasmodium falciparum </it>during pregnancy contributes substantially to the disease burden in both mothers and offspring. Placental malaria may lead to intrauterine growth restriction or preterm delivery resulting in low birth weight (LBW), which, in general, is associated with increased infant morbidity and mortality. However, little is known about the possible direct impact of the specific disease processes occurring in PM on longer term outcomes such as subsequent retarded growth development independent of LBW.</p> <p>Methods</p> <p>In an existing West-African cohort, 783 healthy infants with a birth weight of at least 2,000 g were followed up during their first year of life. The aim of the study was to investigate if <it>Plasmodium falciparum </it>infection of the placenta, assessed by placental histology, has an impact on several anthropometric parameters, measured at birth and after three, six and 12 months using generalized estimating equations models adjusting for moderate low birth weight.</p> <p>Results</p> <p>Independent of LBW, first to third born infants who were exposed to either past, chronic or acute placental malaria during pregnancy had significantly lower weight-for-age (-0.43, 95% CI: -0.80;-0.07), weight-for-length (-0.47, 95% CI: -0.84; -0.10) and BMI-for-age z-scores (-0.57, 95% CI: -0.84; -0.10) compared to infants born to mothers who were not diagnosed with placental malaria (p = 0.019, 0.013, and 0.012, respectively). Interestingly, the longitudinal data on histology-based diagnosis of PM also document a sharp decline of PM prevalence in the Sukuta cohort from 16.5% in 2002 to 5.4% in 2004.</p> <p>Conclusions</p> <p>It was demonstrated that PM has a negative impact on the infant's subsequent weight development that is independent of LBW, suggesting that the longer term effects of PM have been underestimated, even in areas where malaria transmission is declining.</p
Sequestration and Tissue Accumulation of Human Malaria Parasites: Can We Learn Anything from Rodent Models of Malaria?
The sequestration of Plasmodium falciparumโinfected red blood cells (irbcs) in the microvasculature of organs is associated with severe disease; correspondingly, the molecular basis of irbc adherence is an active area of study. In contrast to P. falciparum, much less is known about sequestration in other Plasmodium parasites, including those species that are used as models to study severe malaria. Here, we review the cytoadherence properties of irbcs of the rodent parasite Plasmodium berghei ANKA, where schizonts demonstrate a clear sequestration phenotype. Real-time in vivo imaging of transgenic P. berghei parasites in rodents has revealed a CD36-dependent sequestration in lungs and adipose tissue. In the absence of direct orthologs of the P. falciparum proteins that mediate binding to human CD36, the P. berghei proteins and/or mechanisms of rodent CD36 binding are as yet unknown. In addition to CD36-dependent schizont sequestration, irbcs accumulate during severe disease in different tissues, including the brain. The role of sequestration is discussed in the context of disease as are the general (dis)similarities of P. berghei and P. falciparum sequestration
Distinctive expansion of gene families associated with plant cell wall degradation, secondary metabolism, and nutrient uptake in the genomes of grapevine trunk pathogens
BackgroundTrunk diseases threaten the longevity and productivity of grapevines in all viticulture production systems. They are caused by distantly-related fungi that form chronic wood infections. Variation in wood-decay abilities and production of phytotoxic compounds are thought to contribute to their unique disease symptoms. We recently released the draft sequences of Eutypa lata, Neofusicoccum parvum and Togninia minima, causal agents of Eutypa dieback, Botryosphaeria dieback and Esca, respectively. In this work, we first expanded genomic resources to three important trunk pathogens, Diaporthe ampelina, Diplodia seriata, and Phaeomoniella chlamydospora, causal agents of Phomopsis dieback, Botryosphaeria dieback, and Esca, respectively. Then we integrated all currently-available information into a genome-wide comparative study to identify gene families potentially associated with host colonization and disease development.ResultsThe integration of RNA-seq, comparative and ab initio approaches improved the protein-coding gene prediction in T. minima, whereas shotgun sequencing yielded nearly complete genome drafts of Dia. ampelina, Dip. seriata, and P. chlamydospora. The predicted proteomes of all sequenced trunk pathogens were annotated with a focus on functions likely associated with pathogenesis and virulence, namely (i) wood degradation, (ii) nutrient uptake, and (iii) toxin production. Specific patterns of gene family expansion were described using Computational Analysis of gene Family Evolution, which revealed lineage-specific evolution of distinct mechanisms of virulence, such as specific cell wall oxidative functions and secondary metabolic pathways in N. parvum, Dia. ampelina, and E. lata. Phylogenetically-informed principal component analysis revealed more similar repertoires of expanded functions among species that cause similar symptoms, which in some cases did not reflect phylogenetic relationships, thereby suggesting patterns of convergent evolution.ConclusionsThis study describes the repertoires of putative virulence functions in the genomes of ubiquitous grapevine trunk pathogens. Gene families with significantly faster rates of gene gain can now provide a basis for further studies of in planta gene expression, diversity by genome re-sequencing, and targeted reverse genetic approaches. The functional validation of potential virulence factors will lead to a more comprehensive understanding of the mechanisms of pathogenesis and virulence, which ultimately will enable the development of accurate diagnostic tools and effective disease management
- โฆ