7,388 research outputs found
High temperature control in mediterranean greenhouse production: The constraints and the options
In the open field, the environment is a critical determinant of crop yield and produce quality and it affects the geographical distribution of most crop species. In contrast, in protected cultivation, environmental control allows the fulfillment of the actual needs depending on the technological level. The economic optimum, however, depends on the trade-off between the costs of increased greenhouse control and increase in return, dictated by yield quantity, yield quality and production timing. Additional constraints are increasingly applied for achieving environmental targets. However, the diverse facets of greenhouse technology in different areas of the world will necessarily require different approaches to achieve an improved utilization of the available resources. Although advanced technologies to improve resource use efficiency can be developed as a joint effort between different players involved in greenhouse technology, some specific requirements may clearly hinder the development of common “European” resource management models that, conversely should be calibrated for different environments. For instance, the quantification and control of resource fluxes can be better accomplished in a relatively closed and fully automated system, such as those utilized in the glasshouse of Northern-Central Europe, compared to Southern Europe, where different typologies of semi-open/semi-closed greenhouse systems generally co-exist. Based on these considerations, innovations aimed at improving resource use efficiency in greenhouse agriculture should implement these aspects and should reinforce and integrate information obtained from different research areas concerning the greenhouse production. Advancing knowledge on the physiology of high temperature adaptation, for instance, may support the development and validation of models for optimizing the greenhouse system and climate management in the Mediterranean. Overall, a successful approach will see horticulturists, plant physiologists, engineers and economists working together toward the definition of a sustainable greenhouse system
Accurate measurement of a 96% input coupling into a cavity using polarization tomography
Pillar microcavities are excellent light-matter interfaces providing an
electromagnetic confinement in small mode volumes with high quality factors.
They also allow the efficient injection and extraction of photons, into and
from the cavity, with potentially near-unity input and output-coupling
efficiencies. Optimizing the input and output coupling is essential, in
particular, in the development of solid-state quantum networks where artificial
atoms are manipulated with single incoming photons. Here we propose a technique
to accurately measure input and output coupling efficiencies using polarization
tomography of the light reflected by the cavity. We use the residual
birefringence of pillar microcavities to distinguish the light coupled to the
cavity from the uncoupled light: the former participates to rotating the
polarization of the reflected beam, while the latter decreases the polarization
purity. Applying this technique to a micropillar cavity, we measure a output coupling and a input coupling with unprecedented
precision.Comment: 6 pages, 3 figure
Full-wave electromagnetic modes and hybridization in nanoparticle dimers
The plasmon hybridization theory is based on a quasi-electrostatic approximation of the Maxwell’s equations. It does not take into account magnetic interactions, retardation effects, and radiation losses. Magnetic interactions play a dominant role in the scattering from dielectric nanoparticles. The retardation effects play a fundamental role in the coupling of the modes with the incident radiation and in determining their radiative strength; their exclusion may lead to erroneous predictions of the excited modes and of the scattered power spectra. Radiation losses may lead to a significant broadening of the scattering resonances. We propose a hybridization theory for non-Hermitian composite systems based on the full-Maxwell equations that, overcoming all the limitations of the plasmon hybridization theory, unlocks the description of dielectric dimers. As an example, we decompose the scattered field from silicon and silver dimers, under different excitation conditions and gap-sizes, in terms of dimer modes, pinpointing the hybridizing isolated-sphere modes behind them
The AMBRE Project: Parameterisation of FGK-type stars from the ESO:HARPS archived spectra
The AMBRE project is a collaboration between the European Southern
Observatory (ESO) and the Observatoire de la Cote d'Azur (OCA). It has been
established to determine the stellar atmospheric parameters (effective
temperature, surface gravity, global metallicities and abundance of
alpha-elements over iron) of the archived spectra of four ESO spectrographs.
The analysis of the ESO:HARPS archived spectra is presented. The sample being
analysed (AMBRE:HARPS) covers the period from 2003 to 2010 and is comprised of
126688 scientific spectra corresponding to 17218 different stars. For the
analysis of the spectral sample, the automated pipeline developed for the
analysis of the AMBRE:FEROS archived spectra has been adapted to the
characteristics of the HARPS spectra. Within the pipeline, the stellar
parameters are determined by the MATISSE algorithm, developed at OCA for the
analysis of large samples of stellar spectra in the framework of galactic
archaeology. In the present application, MATISSE uses the AMBRE grid of
synthetic spectra, which covers FGKM-type stars for a range of gravities and
metallicities. We first determined the radial velocity and its associated error
for the ~15% of the AMBRE:HARPS spectra, for which this velocity had not been
derived by the ESO:HARPS reduction pipeline. The stellar atmospheric parameters
and the associated chemical index [alpha/Fe] with their associated errors have
then been estimated for all the spectra of the AMBRE:HARPS archived sample.
Based on quality criteria, we accepted and delivered the parameterisation of
~71% of the total sample to ESO. These spectra correspond to ~10706 stars; each
are observed between one and several hundred times. This automatic
parameterisation of the AMBRE:HARPS spectra shows that the large majority of
these stars are cool main-sequence dwarfs with metallicities greater than -0.5
dex
Method for providing a polarization filter for processing synthetic aperture radar image data
A polarization filter can maximize the signal-to-noise ratio of a polarimetric SAR and help discriminate between targets or enhance image features, e.g., enhance contract between different types of target. The method disclosed is based on the Stokes matrix/Stokes vector representation, so the targets of interest can be extended targets, and the method can also be applied to the case of bistatic polarimetric radars
Isolated large inverted T wave in pulmonary edema due to hypertensive crisis: a novel electrocardiographic phenomenon mimicking ischemia?
Sedimentary Iron Cycling and the Origin and Preservation of Magnetization in Platform Carbonate Muds, Andros Island, Bahamas
Carbonate muds deposited on continental shelves are abundant and well-preserved throughout the geologic record because shelf strata are difficult to subduct and peritidal carbonate units often form thick, rheologically strong units that resist penetrative deformation. Much of what we know about pre-Mesozoic ocean chemistry, carbon cycling, and global change is derived from isotope and trace element geochemistry of platform carbonates. Paleomagnetic data from the same sediments would be invaluable, placing records of paleolatitude, paleogeography, and perturbations to the geomagnetic field in the context and relative chronology of chemostratigraphy. To investigate the depositional and early diagenetic processes that contribute to magneitzation in carbonates, we surveyed over 500 core and surface samples of peritidal, often microbially bound carbonate muds spanning the last not, vert, similar 1000 yr and deposited on top of Pleistocene aeolianites in the Triple Goose Creek region of northwest Andros Island, Bahamas. Sedimentological, geochemical, magnetic and ferromagnetic resonance properties divide the sediment columns into three biogeochemical zones. In the upper sediments, the dominant magnetic mineral is magnetite, produced by magnetotactic bacteria and dissimiliatory microbial iron metabolism. At lower depths, above or near mean tide level, microbial iron reduction dissolves most of the magnetic particles in the sediment. In some cores, magnetic iron sulfides precipitate in a bottom zone of sulfate reduction, likely coupled to the oxidation of decaying mangrove roots. The remanent magnetization preserved in all oriented samples appears indistinguishable from the modern local geomagnetic field, which reflects the post-depositional origin of magnetic particles in the lower zone of the parasequence. While we cannot comment on the effects of late-stage diagenesis or metamorphism on remanence in carbonates, we postulate that early-cemented, thin-laminated parasequence tops in ancient peritidal carbonates are mostly likely to preserve syn-depositional paleomagnetic directions and magnetofossil stratigraphies
Combining the Hybrid Functional Method with Dynamical Mean-Field Theory
We present a new method to compute the electronic structure of correlated
materials combining the hybrid functional method with the dynamical mean-field
theory. As a test example of the method we study cerium sesquioxide, a strongly
correlated Mott-band insulator. The hybrid functional part improves the
magnitude of the pd-band gap which is underestimated in the standard
approximations to density functional theory while the dynamical mean-field
theory part splits the 4f-electron spectra into a lower and an upper Hubbard
band.Comment: 5 pages, 2 figures, replaced with revised version, published in
Europhys. Let
- …
