57 research outputs found

    Solution to the ghost problem in fourth order derivative theories

    Get PDF
    We present a solution to the ghost problem in fourth order derivative theories. In particular we study the Pais-Uhlenbeck fourth order oscillator model, a model which serves as a prototype for theories which are based on second plus fourth order derivative actions. Via a Dirac constraint method quantization we construct the appropriate quantum-mechanical Hamiltonian and Hilbert space for the system. We find that while the second-quantized Fock space of the general Pais-Uhlenbeck model does indeed contain the negative norm energy eigenstates which are characteristic of higher derivative theories, in the limit in which we switch off the second order action, such ghost states are found to move off shell, with the spectrum of asymptotic in and out S-matrix states of the pure fourth order theory which results being found to be completely devoid of states with either negative energy or negative norm. We confirm these results by quantizing the Pais-Uhlenbeck theory via path integration and by constructing the associated first-quantized wave mechanics, and show that the disappearance of the would-be ghosts from the energy eigenspectrum in the pure fourth order limit is required by a hidden symmetry that the pure fourth order theory is unexpectedly found to possess. The occurrence of on-shell ghosts is thus seen not to be a shortcoming of pure fourth order theories per se, but rather to be one which only arises when fourth and second order theories are coupled to each other.Comment: 36 pages, revtex. Prepared for the proceedings of the 2006 Biennial Meeting of the International Association for Relativistic Dynamics Version 2 contains an expanded discussion of the path integral quantization of the Pais-Uhlenbeck fourth order oscillator theor

    Comprehensive Solution to the Cosmological Constant, Zero-Point Energy, and Quantum Gravity Problems

    Full text link
    We present a solution to the cosmological constant, the zero-point energy, and the quantum gravity problems within a single comprehensive framework. We show that in quantum theories of gravity in which the zero-point energy density of the gravitational field is well-defined, the cosmological constant and zero-point energy problems solve each other by mutual cancellation between the cosmological constant and the matter and gravitational field zero-point energy densities. Because of this cancellation, regulation of the matter field zero-point energy density is not needed, and thus does not cause any trace anomaly to arise. We exhibit our results in two theories of gravity that are well-defined quantum-mechanically. Both of these theories are locally conformal invariant, quantum Einstein gravity in two dimensions and Weyl-tensor-based quantum conformal gravity in four dimensions (a fourth-order derivative quantum theory of the type that Bender and Mannheim have recently shown to be ghost-free and unitary). Central to our approach is the requirement that any and all departures of the geometry from Minkowski are to be brought about by quantum mechanics alone. Consequently, there have to be no fundamental classical fields, and all mass scales have to be generated by dynamical condensates. In such a situation the trace of the matter field energy-momentum tensor is zero, a constraint that obliges its cosmological constant and zero-point contributions to cancel each other identically, no matter how large they might be. Quantization of the gravitational field is caused by its coupling to quantized matter fields, with the gravitational field not needing any independent quantization of its own. With there being no a priori classical curvature, one does not have to make it compatible with quantization.Comment: Final version, to appear in General Relativity and Gravitation (the final publication is available at http://www.springerlink.com). 58 pages, revtex4, some additions to text and some added reference

    Limitations of the Standard Gravitational Perfect Fluid Paradigm

    Full text link
    We show that the standard perfect fluid paradigm is not necessarily a valid description of a curved space steady state gravitational source. Simply by virtue of not being flat, curved space geometries have to possess intrinsic length scales, and such length scales can affect the fluid structure. For modes of wavelength of order or greater than such scales eikonalized geometrical optics cannot apply and rays are not geodesic. Covariantizing thus entails not only the replacing of flat space functions by covariant ones, but also the introduction of intrinsic scales that were absent in flat space. In principle it is thus unreliable to construct the curved space energy-momentum tensor as the covariant generalization of a geodesic-based flat spacetime energy-momentum tensor. By constructing the partition function as an incoherent average over a complete set of modes of a scalar field propagating in a curved space background, we show that for the specific case of a static, spherically symmetric geometry, the steady state energy-momentum tensor that ensues will in general be of the form Tμν=(ρ+p)UμUν+pgμν+πμνT_{\mu\nu}=(\rho+p)U_{\mu}U_{\nu}+pg_{\mu\nu}+\pi_{\mu\nu} where the anisotropic πμν\pi_{\mu\nu} is a symmetric, traceless rank two tensor which obeys Uμπμν=0U^{\mu}\pi_{\mu\nu}=0. Such a πμν\pi_{\mu\nu} type term is absent for an incoherently averaged steady state fluid in a spacetime where there are no intrinsic length scales, and in principle would thus be missed in a covariantizing of a flat spacetime TμνT_{\mu\nu}. While the significance of such πμν\pi_{\mu\nu} type terms would need to be evaluated on a case by case basis, through the use of kinetic theory we reassuringly find that the effect of such πμν\pi_{\mu\nu} type terms is small for weak gravity stars where perfect fluid sources are commonly used.Comment: Final version to appear in General Relativity and Gravitation (the final publication is available at http://www.springerlink.com). 29 pages, 1 figur

    Spherical Solutions due to the Exterior Geometry of a Charged Weyl Black Hole

    Full text link
    Firstly we derive peculiar spherical Weyl solutions, using a general spherically symmetric metric due to a massive charged object with definite mass and radius. Afterwards, we present new analytical solutions for relevant cosmological terms, which appear in the metrics. Connecting the metrics to a new geometric definition of a charged Black Hole, we numerically investigate the effective potentials of the total dynamical system, considering massive and massless test particles, moving on such Black Holes.Comment: 8 pages, 5 figure

    A Kinematical Approach to Conformal Cosmology

    Get PDF
    We present an alternative cosmology based on conformal gravity, as originally introduced by H. Weyl and recently revisited by P. Mannheim and D. Kazanas. Unlike past similar attempts our approach is a purely kinematical application of the conformal symmetry to the Universe, through a critical reanalysis of fundamental astrophysical observations, such as the cosmological redshift and others. As a result of this novel approach we obtain a closed-form expression for the cosmic scale factor R(t) and a revised interpretation of the space-time coordinates usually employed in cosmology. New fundamental cosmological parameters are introduced and evaluated. This emerging new cosmology does not seem to possess any of the controversial features of the current standard model, such as the presence of dark matter, dark energy or of a cosmological constant, the existence of the horizon problem or of an inflationary phase. Comparing our results with current conformal cosmologies in the literature, we note that our kinematic cosmology is equivalent to conformal gravity with a cosmological constant at late (or early) cosmological times. The cosmic scale factor and the evolution of the Universe are described in terms of several dimensionless quantities, among which a new cosmological variable delta emerges as a natural cosmic time. The mathematical connections between all these quantities are described in details and a relationship is established with the original kinematic cosmology by L. Infeld and A. Schild. The mathematical foundations of our kinematical conformal cosmology will need to be checked against current astrophysical experimental data, before this new model can become a viable alternative to the standard theory.Comment: Improved version, with minor changes. 58 pages, including 7 figures and one table. Accepted for publication in General Relativity and Gravitation (GERG

    Higher Derivative Operators from Transmission of Supersymmetry Breaking on S_1/Z_2

    Full text link
    We discuss the role that higher derivative operators play in field theory orbifold compactifications on S_1/Z_2 with local and non-local (Scherk-Schwarz) breaking of supersymmetry. Integrating out the bulk fields generates brane-localised higher derivative counterterms to the mass of the brane (or zero-mode of the bulk) scalar field, identified with the Higgs field in many realistic models. Both Yukawa and gauge interactions are considered and the one-loop results found can be used to study the ``running'' of the scalar field mass with respect to the momentum scale in 5D orbifolds. In particular this allows the study of the behaviour of the mass under UV scaling of the momentum. The relation between supersymmetry breaking and the presence of higher derivative counterterms to the mass of the scalar field is investigated. This shows that, regardless of the breaking mechanism, (initial) supersymmetry cannot, in general, prevent the emergence of such operators. Some implications for phenomenology of the higher derivative operators are also presented.Comment: 29 pages, LaTeX. Added Section 4 ("Phenomenological implications: living with ghosts?") and Appendix

    A class of elementary particle models without any adjustable real parameters

    Get PDF
    Conventional particle theories such as the Standard Model have a number of freely adjustable coupling constants and mass parameters, depending on the symmetry algebra of the local gauge group and the representations chosen for the spinor and scalar fields. There seems to be no physical principle to determine these parameters as long as they stay within certain domains dictated by the renormalization group. Here however, reasons are given to demand that, when gravity is coupled to the system, local conformal invariance should be a spontaneously broken exact symmetry. The argument has to do with the requirement that black holes obey a complementarity principle relating ingoing observers to outside observers, or equivalently, initial states to final states. This condition fixes all parameters, including masses and the cosmological constant. We suspect that only examples can be found where these are all of order one in Planck units, but the values depend on the algebra chosen. This paper combines findings reported in two previous preprints, and puts these in a clearer perspective by shifting the emphasis towards the implications for particle models.Comment: 28 pages (incl. title page), no figure

    Compactifications of conformal gravity

    Full text link
    We study conformal theories of gravity, i.e. those whose action is invariant under the local transformation g_{\mu\nu} -> \omega^2 (x) g_{\mu\nu}. As is well known, in order to obtain Einstein gravity in 4D it is necessary to introduce a scalar compensator with a VEV that spontaneously breaks the conformal invariance and generates the Planck mass. We show that the compactification of extra dimensions in a higher dimensional conformal theory of gravity also yields Einstein gravity in lower dimensions, without the need to introduce the scalar compensator. It is the field associated with the size of the extra dimensions (the radion) who takes the role of the scalar compensator in 4D. The radion has in this case no physical excitations since they are gauged away in the Einstein frame for the metric. In these models the stabilization of the size of the extra dimensions is therefore automatic.Comment: 13 page

    Energy in Generic Higher Curvature Gravity Theories

    Get PDF
    We define and compute the energy of higher curvature gravity theories in arbitrary dimensions. Generically, these theories admit constant curvature vacua (even in the absence of an explicit cosmological constant), and asymptotically constant curvature solutions with non-trivial energy properties. For concreteness, we study quadratic curvature models in detail. Among them, the one whose action is the square of the traceless Ricci tensor always has zero energy, unlike conformal (Weyl) gravity. We also study the string-inspired Einstein-Gauss-Bonnet model and show that both its flat and Anti-de-Sitter vacua are stable.Comment: 18 pages, typos corrected, one footnote added, to appear in Phys. Rev.

    Spherically Symmetric Braneworld Solutions with R_{4} term in the Bulk

    Get PDF
    An analysis of a spherically symmetric braneworld configuration is performed when the intrinsic curvature scalar is included in the bulk action; the vanishing of the electric part of the Weyl tensor is used as the boundary condition for the embedding of the brane in the bulk. All the solutions outside a static localized matter distribution are found; some of them are of the Schwarzschild-(A)dS_{4} form. Two modified Oppenheimer-Volkoff interior solutions are also found; one is matched to a Schwarzschild-(A)dS_{4} exterior, while the other does not. A non-universal gravitational constant arises, depending on the density of the considered object; however, the conventional limits of the Newton's constant are recovered. An upper bound of the order of TeV for the energy string scale is extracted from the known solar system measurements (experiments). On the contrary, in usual brane dynamics, this string scale is calculated to be larger than TeV.Comment: 23 pages, 1 figure, one minor chang
    corecore