5,961 research outputs found

    Very low shot noise in carbon nanotubes

    Full text link
    We have performed noise measurements on suspended ropes of single wall carbon nanotubes (SWNT) between 1 and 300 K for different values of dc current through the ropes. We find that the shot noise is suppressed by more than a factor 100 compared to the full shot noise 2eI. We have also measured an individual SWNT and found a level of noise which is smaller than the minimum expected. Another finding is the very low level of 1/f noise, which is significantly lower than previous observations. We propose two possible interpretations for this strong shot noise reduction: i) Transport within a rope takes place through a few nearly ballistic tubes within a rope and possibly involves non integer effective charges. ii) A substantial fraction of the tubes conduct with a strong reduction of effective charge (by more than a factor 50).Comment: Submitted to Eur. Phys. J. B (Jan. 2002) Higher resolution pictures are posted on http://www.lps.u-psud.fr/Collectif/gr_07/publications.htm

    Vortex density spectrum of quantum turbulence

    Full text link
    The fluctuations of the vortex density in a turbulent quantum fluid are deduced from local second-sound attenuation measurements. These measurements are performed with a micromachined open-cavity resonator inserted across a flow of turbulent He-II near 1.6 K. The power spectrum of the measured vortex line density is compatible with a (-5/3) power law. The physical interpretation, still open, is discussed.Comment: Submitted to Europhys. Let

    New Cepheid variables in the young open clusters Berkeley 51 and Berkeley 55

    Get PDF
    As part of a wider investigation of evolved massive stars in Galactic open clusters, we have spectroscopically identified three candidate classical Cepheids in the little-studied clusters Berkeley 51, Berkeley 55 and NGC 6603. Using new multi-epoch photometry, we confirm that Be 51 #162 and Be 55 #107 are bona fide Cepheids, with pulsation periods of 9.83±0.01 d and 5.850±0.005 d respectively, while NGC 6603 star W2249 does not show significant photometric variability. Using the period-luminosity relationship for Cepheid variables, we determine a distance to Be 51 of 5.3 +1.0 −0.8 kpc and an age of 44 +9 −8 Myr, placing it in a sparsely-attested region of the Perseus arm. For Be 55, we find a distance of 2.2±0.3 kpc and age of 63 +12 −11 Myr, locating the cluster in the Local arm. Taken together with our recent discovery of a long-period Cepheid in the starburst cluster VdBH222, these represent an important increase in the number of young, massive Cepheids known in Galactic open clusters. We also consider new Gaia (data release 2) parallaxes and proper motions for members of Be 51 and Be 55; the uncertainties on the parallaxes do not allow us to refine our distance estimates to these clusters, but the well-constrained proper motion measurements furnish further confirmation of cluster membership. However, future final Gaia parallaxes for such objects should provide valuable independent distance measurements, improving the calibration of the period-luminosity relationship, with implications for the distance ladder out to cosmological scales

    Intrinsic and extrinsic decay of edge magnetoplasmons in graphene

    Full text link
    We investigate intrinsic and extrinsic decay of edge magnetoplasmons (EMPs) in graphene quantum Hall (QH) systems by high-frequency electronic measurements. From EMP resonances in disk shaped graphene, we show that the dispersion relation of EMPs is nonlinear due to interactions, giving rise to intrinsic decay of EMP wavepacket. We also identify extrinsic dissipation mechanisms due to interaction with localized states in bulk graphene from the decay time of EMP wavepackets. We indicate that, owing to the unique linear and gapless band structure, EMP dissipation in graphene can be lower than that in GaAs systems.Comment: 5 page

    Effect of interactions on the noise of chiral Luttinger liquid systems

    Full text link
    We analyze the current noise, generated at a quantum point contact in fractional quantum Hall edge state devices, using the chiral Luttinger liquid model with an impurity and the associated exact field theoretic solution. We demonstrate that an experimentally relevant regime of parameters exists where the noise coincides with the partition noise of independent Laughlin quasiparticles. However, outside of this regime, this independent particle picture breaks down and the inclusion of interaction effects is essential to understand the shot noise.Comment: 4 pages, 3 figures; v2: modified FIG.1, new FIG.

    Effects of magnetic field and disorder on electronic properties of Carbon Nanotubes

    Get PDF
    Electronic properties of metallic and semiconducting carbon nanotubes are investigated in presence of magnetic field perpendicular to the CN-axis, and disorder introduced through energy site randomness. The magnetic field field is shown to induce a metal-insulator transition (MIT) in absence of disorder, and surprisingly disorder does not affect significantly the MIT. These results may find confirmation through tunneling experimentsComment: 4 pages, 6 figures. Phys. Rev. B (in press

    Quantum coherence engineering in the integer quantum Hall regime

    Full text link
    We present an experiment where the quantum coherence in the edge states of the integer quantum Hall regime is tuned with a decoupling gate. The coherence length is determined by measuring the visibility of quantum interferences in a Mach-Zehnder interferometer as a function of temperature, in the quantum Hall regime at filling factor two. The temperature dependence of the coherence length can be varied by a factor of two. The strengthening of the phase coherence at finite temperature is shown to arise from a reduction of the coupling between co-propagating edge states. This opens the way for a strong improvement of the phase coherence of Quantum Hall systems. The decoupling gate also allows us to investigate how inter-edge state coupling influence the quantum interferences' dependence on the injection bias. We find that the finite bias visibility can be decomposed into two contributions: a Gaussian envelop which is surprisingly insensitive to the coupling, and a beating component which, on the contrary, is strongly affected by the coupling.Comment: 4 pages, 5 figure
    corecore