320 research outputs found

    Molecular Assay for Fraud Identification of Handmade Hamburgers

    Full text link

    Assessment of numerical methods for fully resolved simulations of particle-laden turbulent flows

    Get PDF
    This work was granted access to the HPC resources of CALMIP and the National Center for Atmospheric Researchs (NCAR) supercomputing centers. P. Costa acknowledges the funding from the Portuguese Foundation for Science and Technology under grant no. SFRH/BD/85501/2012. L.-P. Wang acknowledges the funding from the U.S. National Science Foundation (NSF) under grants CBET-1706130.Peer reviewedPostprin

    Whipple's disease: rare disorder and late diagnosis

    Full text link
    Whipple's disease is a rare systemic infectious disorder caused by the bacterium Tropheryma whipplei. We report the case of a 61-year-old male patient who presented to emergency room complaining of asthenia, arthralgia, anorexia, articular complaints intermittent diarrhea, and a 10-kg weight loss in one year. Laboratory tests showed the following results: Hb = 7.5 g/dL, albumin = 2.5 mg/dL, weight = 50.3 kg (BMI 17.4 kg/m²). Upper gastrointestinal endoscopy revealed areas of focal enanthema in the duodenum. An endoscopic biopsy was suggestive of Whipple's disease. Diagnosis was confirmed based on a positive serum polymerase chain reaction. Treatment was initiated with intravenous ceftriaxone followed by oral trimethoprim-sulfamethoxazole. After one year of treatment, the patient was asymptomatic, with Hb = 13.5 g/dL, serum albumin = 5.3 mg/dL, and weight = 70 kg (BMI 24.2 kg/m²). Whipple's disease should be considered a differential diagnosis in patients with prolonged constitutional and/or gastrointestinal symptoms. Appropriate antibiotic treatment improves the quality of life of patients

    Classification of Sharks in the Egyptian Mediterranean Waters Using Morphological and DNA Barcoding Approaches

    Get PDF
    The identification of species constitutes the first basic step in phylogenetic studies, biodiversity monitoring and conservation. DNA barcoding, i.e. the sequencing of a short standardized region of DNA, has been proposed as a new tool for animal species identification. The present study provides an update on the composition of shark in the Egyptian Mediterranean waters off Alexandria, since the latest study to date was performed 30 years ago, DNA barcoding was used in addition to classical taxonomical methodologies. Thus, 51 specimen were DNA barcoded for a 667 bp region of the mitochondrial COI gene. Although DNA barcoding aims at developing species identification systems, some phylogenetic signals were apparent in the data. In the neighbor-joining tree, 8 major clusters were apparent, each of them containing individuals belonging to the same species, and most with 100% bootstrap value. This study is the first to our knowledge to use DNA barcoding of the mitochondrial COI gene in order to confirm the presence of species Squalus acanthias, Oxynotus centrina, Squatina squatina, Scyliorhinus canicula, Scyliorhinus stellaris, Mustelus mustelus, Mustelus punctulatus and Carcharhinus altimus in the Egyptian Mediterranean waters. Finally, our study is the starting point of a new barcoding database concerning shark composition in the Egyptian Mediterranean waters (Barcoding of Egyptian Mediterranean Sharks [BEMS], http://www.boldsystems.org/views/projectlist.php?&#Barcoding%20Fish%20%28FishBOL%29)

    Thirty Years with EoS/G<sup>E</sup> Models - What Have We Learned?

    Get PDF

    Orientational Effects and Random Mixing in 1-Alkanol + Alkanone Mixtures

    Get PDF
    1-Alkanol + alkanone systems have been investigated through the data analysis of molar excess functions, enthalpies, isobaric heat capacities, volumes and entropies, and using the Flory model and the formalism of the concentrationconcentration structure factor (SCC(0)). The enthalpy of the hydroxyl-carbonyl interactions has been evaluated. These interactions are stronger in mixtures with shorter alcohols (methanol-1-butanol) and 2-propanone or 2-butanone. However, effects related to the self-association of alcohols and to solvation between unlike molecules are of minor importance when compared with those which arise from dipolar interactions. Physical interactions are more relevant in mixtures with longer 1-alkanols. The studied systems are characterized by large structural effects. The variation of the molar excess enthalpy with the alcohol size along systems with a given ketone or with the alkanone size in solutions with a given alcohol are discussed in terms of the different contributions to this excess function. Mixtures with methanol show rather large orientational effects. The random mixing hypothesis is attained to a large extent for mixtures with 1-alkanols ≠ methanol and 2-alkanones. Steric effects and cyclization lead to stronger orientational effects in mixtures with 3-pentanone, 4-heptanone, or cyclohexanone. The increase of temperature weakens orientational effects. Results from SCC(0) calculations show that homocoordination is predominant and support conclusions obtained from the Flory model.Ministerio de Ciencia e Innovación, under Project FIS2010-1695

    Orientational Effects and Random Mixing in 1‑Alkanol + Nitrile Mixtures

    Get PDF
    1-Alkanol + alkanenitrile or + benzonitrile systems have been investigated by means of the molar excess functionsenthalpies (Hm E ), isobaric heat capacities (Cp,m E ), volumes (Vm E ), and entropiesand using the Flory model and the concentration−concentration structure factor (SCC(0)) formalism. From the analysis of the experimental data available in the literature, it is concluded that interactions are mainly of dipolar type. In addition, large Hm E values contrast with rather low Vm E values, indicating the existence of strong structural effects. Hm E measurements have been used to evaluate the enthalpy of the hydroxyl−nitrile interactions (ΔHOH−CN). They are stronger in methanol systems and become weaker when the alcohol size increases. In solutions with a given short chain 1-alkanol (up to 1-butanol), the replacement of ethanenitrile by butanenitrile weakens the mentioned interactions. Application of the Flory model shows that orientational effects exist in methanol or 1- nonanol, or 1-decanol + ethanenitrile mixtures. In the former solution, this is due to the existence of interactions between unlike molecules. For mixtures including 1-nonanol or 1-decanol, the systems at 298.15 K are close to their UCST (upper critical solution temperature), and interactions between like molecules are dominant. Orientational effects also are encountered in methanol or ethanol + butanenitrile mixtures because self-association of the alcohol plays a more important role. Aromaticity effect seems to enhance orientational effects. For the remainder of the systems under consideration, the random mixing hypothesis is attained to a rather large extent. Results from the application of the SCC(0) formalism show that homocoordination is the dominant trend in the investigated solutions, and are consistent with those obtained from the Flory model

    A brown dwarf orbiting an M-dwarf: MOA 2009–BLG–411L

    Get PDF
    peer reviewedContext. Caustic crossing is the clearest signature of binary lenses in microlensing. In the present context, this signature is diluted by the large source star but a detailed analysis has allowed the companion signal to be extracted. Aims: MOA 2009-BLG-411 was detected on August 5, 2009 by the MOA-Collaboration. Alerted as a high-magnification event, it was sensitive to planets. Suspected anomalies in the light curve were not confirmed by a real-time model, but further analysis revealed small deviations from a single lens extended source fit. Methods: Thanks to observations by all the collaborations, this event was well monitored. We first decided to characterize the source star properties by using a more refined method than the classical one: we measure the interstellar absorption along the line of sight in five different passbands (VIJHK). Secondly, we model the lightcurve by using the standard technique: make (s,q,α) grids to look for local minima and refine the results by using a downhill method (Markov chain Monte Carlo). Finally, we use a Galactic model to estimate the physical properties of the lens components. Results: We find that the source star is a giant G star with radius 9 R[SUB]&sun;[/SUB]. The grid search gives two local minima, which correspond to the theoretical degeneracy s ≡ s[SUP]-1[/SUP]. We find that the lens is composed of a brown dwarf secondary of mass M[SUB]S[/SUB] = 0.05 M[SUB]&sun;[/SUB] orbiting a primary M-star of mass M[SUB]P[/SUB] = 0.18 M[SUB]&sun;[/SUB]. We also reveal a new mass-ratio degeneracy for the central caustics of close binaries. Conclusions: As far as we are aware, this is the first detection using the microlensing technique of a binary system in our Galaxy composed of an M-star and a brown dwarf. Appendix is available in electronic form at http://www.aanda.org</A
    corecore