622 research outputs found
Resonant speed meter for gravitational wave detection
Gravitational-wave detectors have been well developed and operated with high
sensitivity. However, they still suffer from mirror displacement noise. In this
paper, we propose a resonant speed meter, as a displacement noise-canceled
configuration based on a ring-shaped synchronous recycling interferometer. The
remarkable feature of this interferometer is that, at certain frequencies,
gravitational-wave signals are amplified, while displacement noises are not.Comment: 4 pages, 4 figure
High-sensitivity tool for studying phonon related mechanical losses in low loss materials
Fundamental mechanical loss mechanisms exist even in very pure materials, for
instance, due to the interactions of excited acoustic waves with thermal
phonons. A reduction of these losses in a certain frequency range is desired in
high precision instruments like gravitational wave detectors. Systematic
analyses of the mechanical losses in those low loss materials are essential for
this aim, performed in a highly sensitive experimental set-up. Our novel method
of mechanical spectroscopy, cryogenic resonant acoustic spectroscopy of bulk
materials (CRA spectroscopy), is well suited to systematically determine losses
at the resonant frequencies of the samples of less than 10^(-9) in the wide
temperature range from 5 to 300 K. A high precision set-up in a specially built
cryostat allows contactless excitation and readout of the oscillations of the
sample. The experimental set-up and measuring procedure are described.
Limitations to our experiment due to external loss mechanisms are analysed. The
influence of the suspension system as well as the sample preparation is
explained.Comment: 4 pages, 3 figures, proceedings of PHONONS07, submitted to Journal of
Physics: Conference Serie
Suspensions Thermal Noise in the LIGO Gravitational Wave Detector
We present a calculation of the maximum sensitivity achievable by the LIGO
Gravitational wave detector in construction, due to limiting thermal noise of
its suspensions. We present a method to calculate thermal noise that allows the
prediction of the suspension thermal noise in all its 6 degrees of freedom,
from the energy dissipation due to the elasticity of the suspension wires. We
show how this approach encompasses and explains previous ways to approximate
the thermal noise limit in gravitational waver detectors. We show how this
approach can be extended to more complicated suspensions to be used in future
LIGO detectors.Comment: 28 pages, 13 figure
Upper Limit on Gravitational Wave Backgrounds at 0.2 Hz with Torsion-bar Antenna
We present the first upper limit on gravitational wave (GW) backgrounds at an
unexplored frequency of 0.2 Hz using a torsion-bar antenna (TOBA). A TOBA was
proposed to search for low-frequency GWs. We have developed a small-scaled TOBA
and successfully found {\Omega}gw(f) < 4.3 \times 1017 at 0.2 Hz as
demonstration of the TOBA's capabilities, where {\Omega}gw (f) is the GW energy
density per logarithmic frequency interval in units of the closure density. Our
result is the first nonintegrated limit to bridge the gap between the LIGO band
(around 100 Hz) and the Cassini band (10-6 - 10-4 Hz).Comment: 4 pages, 5 figure
Internal thermal noise in the LIGO test masses : a direct approach
The internal thermal noise in LIGO's test masses is analyzed by a new
technique, a direct application of the Fluctuation-Dissipation Theorem to
LIGO's readout observable, (longitudinal position of test-mass face,
weighted by laser beam's Gaussian profile). Previous analyses, which relied on
a normal-mode decomposition of the test-mass motion, were valid only if the
dissipation is uniformally distributed over the test-mass interior, and they
converged reliably to a final answer only when the beam size was a
non-negligible fraction of the test-mass cross section. This paper's direct
analysis, by contrast, can handle inhomogeneous dissipation and arbitrary beam
sizes. In the domain of validity of the previous analysis, the two methods give
the same answer for , the spectral density of thermal noise, to within
expected accuracy. The new analysis predicts that thermal noise due to
dissipation concentrated in the test mass's front face (e.g. due to mirror
coating) scales as , by contrast with homogeneous dissipation, which
scales as ( is the beam radius); so surface dissipation could
become significant for small beam sizes.Comment: 6 pages, RevTex, 1 figur
Upper limits on stray force noise for LISA
We have developed a torsion pendulum facility for LISA gravitational
reference sensor ground testing that allows us to put significant upper limits
on residual stray forces exerted by LISA-like position sensors on a
representative test mass and to characterize specific sources of disturbances
for LISA. We present here the details of the facility, the experimental
procedures used to maximize its sensitivity, and the techniques used to
characterize the pendulum itself that allowed us to reach a torque sensitivity
below 20 fNm /sqrt{Hz} from 0.3 to 10 mHz. We also discuss the implications of
the obtained results for LISA.Comment: To be published in Classical and Quantum Gravity, special issue on
Amaldi5 2003 conference proceedings (10 pages, 6 figures
Gravitational radiation observations on the moon
A Laser‐Interferometer Gravitational‐Wave Observatory (LIGO) is planned for operation in the United States, with two antennas separated by several thousand kilometers. Each antenna would incorporate laser interferometers with 4 km arm lengths, operating in vacuum. The frequency range covered initially would be from a few tens of Hz to a few kHz, with possible extension to lower frequencies later. Similar systems are likely to be constructed in Europe, and there is a possibility of at least one system in Asia or Australia. It will be possible to determine the direction to a gravitational wave source by measuring the difference in the arrival times at the various antennas for burst signals or the phase difference for short duration nearly periodic signals. The addition of an antenna on the Moon, operating in support of the Earth‐based antennas, would improve the angular resolution for burst signals by about a factor 50 in the plane containing the source, the Moon, and the Earth. This would be of major importance in studies of gravitational wave sources. There is also a possibility of somewhat lower noise at frequencies near 1 Hz for a lunar gravitational wave antenna, because of lower gravity gradient noise and microseismic noise on the Moon. However, for frequencies near 0.1 Hz and below, a 10^7 km laser gravitational wave antenna in solar orbit would be much more sensitive
The Response of Test Masses to Gravitational Waves in the Coordinates of a Local Observer
The response of laser interferometers to gravitational waves has been
calculated in a number of different ways, particularly in the
transverse-traceless and the local Lorentz gauges. At first sight, it would
appear that these calculations lead to different results when the separation
between the test masses becomes comparable to the wavelength of the
gravitational wave. In this paper this discrepancy is resolved. We describe the
response of free test masses to plane gravitational waves in the coordinate
frame of a local observer and show that it acquires contributions from three
different effects: the displacement of the test masses, the apparent change in
the photon velocity, and the variation in the clock speed of the local
observer, all of which are induced by the gravitational wave. Only when taken
together do these three effects represent a quantity which is translationally
invariant. This translationally-invariant quantity is identical to the response
function calculated in the transverse-traceless gauge. We thus resolve the
well-known discrepancy between the two coordinates systems, and show that the
results found in the coordinate frame of a local observer are valid for large
separation between the masses.Comment: 25 pages, 3 figures, Latex2
Thermal noise of folding mirrors
Current gravitational wave detectors rely on the use of Michelson interferometers. One crucial limitation of their sensitivity is the thermal noise of their optical components. Thus, for example fluctuational deformations of the mirror surface are probed by a laser beam being reflected from the mirrors at normal incidence. Thermal noise models are well evolved for that case but mainly restricted to single reflections. In this work we present the effect of two consecutive reflections under a non-normal incidence onto mirror thermal noise. This situation is inherent to detectors using a geometrical folding scheme such as GEO\,600. We revise in detail the conventional direct noise analysis scheme to the situation of non-normal incidence allowing for a modified weighting funtion of mirror fluctuations. An application of these results to the GEO\,600 folding mirror for Brownian, thermoelastic and thermorefractive noise yields an increase of displacement noise amplitude by 20\% for most noise processes. The amplitude of thermoelastic substrate noise is increased by a factor 4 due to the modified weighting function. Thus the consideration of the correct weighting scheme can drastically alter the noise predictions and demands special care in any thermal noise design process
Experimental measurement of photothermal effect in Fabry-Perot cavities
We report the experimental observation of the photothermal effect. The
measurements are performed by modulating the laser power absorbed by the
mirrors of two high-finesse Fabry-Perot cavities. The results are very well
described by a recently proposed theoretical model [M. Cerdonio, L. Conti, A.
Heidmann and M. Pinard, Phys. Rev. D 63 (2001) 082003], confirming the
correctness of such calculations. Our observations and quantitative
characterization of the photothermal effect demonstrate its critical importance
for high sensitivity interferometric displacement measurements, as those
necessary for gravitational wave detection.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let
- …
