3,063 research outputs found
A network-based view of regional growth
The need to better understand the mechanisms underlying regional growth patterns is widely recognised. This paper argues that regional growth is partly a function of the value created through inter-organisational flows of knowledge within and across regions. It is proposed that investment in calculative networks by organisations to access knowledge is a form of capital, termed network capital, which should be incorporated into regional growth models. The paper seeks to develop a framework to capture the value of network capital within these models based on the spatial configuration and the nature of the knowledge flowing through networks
The Formation of Globules in Planetary Nebulae
We discuss the formation of globules in planetary nebulae, typified by those
observed in the Helix Nebula. We show that the properties of the globules,
their number, mass, separation, and overall geometry strongly support a
scenario in which globules are formed by the fragmentation of a swept-up shell
as opposed to models in which the knots form in the AGB wind. We show that the
RT or other instabilities which lead to the break-up of shells formed in the
nebulae by fast winds or ionization fronts can produce arrays of globules with
the overall geometry and within the mass range observed. We also show that the
presence of a magnetic field in the circumstellar gas may play an important
role in controlling the fragmentation process. Using field strengths measured
in the precursor AGB envelopes, we find that close to the central star where
the fields are relatively strong, the wavelengths of unstable MRT modes are
larger than the shell dimensions, and the fragmentation of the shell is
suppressed. The wavelength of the most unstable MRT mode decreases with
increasing distance from the star, and when it becomes comparable to the shell
thickness, it can lead to the sudden, rapid break-up of an accelerating shell.
For typical nebula parameters, the model results in numerous fragments with a
mass scale and a separation scale similar to those observed. Our results
provide a link between global models of PN shaping in which shells form via
winds and ionization fronts, and the formation of small scale structures in the
nebulae.Comment: 4 pages, 2 figures, to appear in IAU Symp. 234, Planetary Nebulae in
Our Galaxy and Beyond, eds. M. J. Barlow, R. H. Mende
Deep optical imaging of AGB circumstellar envelopes
We report results of a program to image the extended circumstellar envelopes
of asymptotic giant branch (AGB) stars in dust-scattered Galactic light. The
goal is to characterize the shapes of the envelopes to probe the mass-loss
geometry and the presence of hidden binary companions. The observations consist
of deep optical imaging of 22 AGB stars with high mass loss rates: 16 with the
ESO 3.5 m NTT telescope, and the remainder with other telescopes. The
circumstellar envelopes are detected in 15 objects, with mass loss rates > 2E-6
Msun/year. The surface brightness of the envelopes shows a strong decrease with
Galactic radius, which indicates a steep radial gradient in the interstellar
radiation field. The envelopes range from circular to elliptical in shape, and
we characterize them by the ellipticity (E = major/minor axis) of iso-intensity
contours. We find that about 50 percent of the envelopes are close to circular
with E
1.2. We interpret the shapes in terms of populations of single stars and
binaries whose envelopes are flattened by a companion. The distribution of E is
qualitatively consistent with expectations based on population synthesis models
of binary AGB stars. We also find that about 50 percent of the sample exhibit
small-scale, elongated features in the central regions. We interpret these as
the escape of light from the central star through polar holes, which are also
likely produced by companions. Our observations of envelope flattening and
polar holes point to a hidden population of companions within the circumstellar
envelopes of AGB stars. These companions are expected to play an important role
in the transition to post-AGB stars and the formation of planetary nebulae.Comment: 19 pages, 13 figures, color pictures in Appendix, accepted by A&
PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference
Generalized linear models (GLMs) -- such as logistic regression, Poisson
regression, and robust regression -- provide interpretable models for diverse
data types. Probabilistic approaches, particularly Bayesian ones, allow
coherent estimates of uncertainty, incorporation of prior information, and
sharing of power across experiments via hierarchical models. In practice,
however, the approximate Bayesian methods necessary for inference have either
failed to scale to large data sets or failed to provide theoretical guarantees
on the quality of inference. We propose a new approach based on constructing
polynomial approximate sufficient statistics for GLMs (PASS-GLM). We
demonstrate that our method admits a simple algorithm as well as trivial
streaming and distributed extensions that do not compound error across
computations. We provide theoretical guarantees on the quality of point (MAP)
estimates, the approximate posterior, and posterior mean and uncertainty
estimates. We validate our approach empirically in the case of logistic
regression using a quadratic approximation and show competitive performance
with stochastic gradient descent, MCMC, and the Laplace approximation in terms
of speed and multiple measures of accuracy -- including on an advertising data
set with 40 million data points and 20,000 covariates.Comment: In Proceedings of the 31st Annual Conference on Neural Information
Processing Systems (NIPS 2017). v3: corrected typos in Appendix
Neutral atomic carbon in the globules of the Helix
We report detection of the 609u line of neutral atomic carbon in globules of
the Helix nebula. The measurements were made towards the position of peak CO
emission. At the same position, we obtained high-quality CO(2-1) and 13CO(2-1)
spectra and a 135" x 135" map in CO(2-1). The velocity distribution of CI shows
six narrow (1 -> 2 km/sec) components which are associated with individual
globules traced in CO. The CI column densities are 0.5 -> 1.2 x 10^16/cm^2. CI
is found to be a factor of ~6 more abundant than CO. Our estimate for the mass
of the neutral envelope is an order of magnitude larger than previous
estimates. The large abundance of CI in the Helix can be understood as a result
of the gradual photoionisation of the molecular envelope by the central star's
radiation field.Comment: 5 pages, Latex, AAS macros, 3 EPS figures, to appear in Astrophysical
Journal Letter
The Shapes of AGB Envelopes as Probes of Binary Companions
We describe how the large scale geometry of the circumstellar envelopes of
asymptotic giant branch stars can be used to probe the presence of unseen
stellar companions. A nearby companion modifies the mass loss by
gravitationally focusing the wind towards the orbital plane, and thereby
determines the shape of the envelope at large distances from the star. Using
available simulations, we develop a prescription for the observed shapes of
envelopes in terms of the binary parameters, envelope orientation, and type of
observation. The prescription provides a tool for the analysis of envelope
images at optical, infrared, and millimetre wavelengths, which can be used to
constrain the presence of companions in well observed cases. We illustrate this
approach by examining the possible role of binary companions in triggering the
onset of axi-symmetry in planetary nebula formation. If interaction with the
primary leads to axi-symmetry, the spherical halos widely seen around newly
formed nebulae set limits on the companion mass. Only low mass objects may
orbit close to the primary without observable shaping effects: they remain
invisible until the interaction causes a sudden change in the mass loss
geometry.Comment: 11 pages, 7 figures, to appear in MNRA
- âŠ