43 research outputs found

    Life cycle assessment and feasibility analysis of a combined chemical looping combustion and power-to-methane system for CO2 capture and utilization

    Get PDF
    The ability to store effectively excess of electrical energy from peaks of production is key to the development of renewable energies. Power-To-Gas, and specifically Power-To-Methane represents one of the most promising option. This works presents an innovative process layout that integrates Chemical Looping Combustion of solid fuels and a Power-to-Methane system. The core of the proposed layout is a multiple interconnected fluidized bed system (MFB) equipped with a two-stage fuel reactor (t-FR). Performances of the system were evaluated by considering a coal as fuel and CuO supported on zirconia as oxygen carrier. A kinetic scheme comprising both heterogeneous and homogeneous reactions occurring in the MFB was considered. The methanation unit was modelled developing a thermodynamic calculation method based on minimization of the free Gibbs energy. The performance of the system was evaluated by considering that the CO/CO2 stream coming from the t-FR reacts over Ni supported on alumina catalyst with a pure H2 stream generated by an array of electrolysis cells. The number of cells to be stacked in the array was evaluated by considering that a constant H2 production able to convert the whole CO/CO2 stream produced by the CLC process should be attained. The environmental performance of the proposed process was quantified using the Life Cycle Assessment (LCA) methodology. The analysis shows i) that the majority originate from the production and disposal of the oxygen carrier used in the t-FR, and ii) that reusing part of the oxygen produced by the electrolysis cells improves significantly the environmental performance of the proposed process

    Life cycle assessment and feasibility analysis of a combined chemical looping combustion and power-to-methane system for CO2 capture and utilization

    Get PDF
    The ability to store effectively excess of electrical energy from peaks of production is key to the development of renewable energies. Power-To-Gas, and specifically Power-To-Methane represents one of the most promising option. This works presents an innovative process layout that integrates Chemical Looping Combustion of solid fuels and a Power-to-Methane system. The core of the proposed layout is a multiple interconnected fluidized bed system (MFB) equipped with a two-stage fuel reactor (t-FR). Performances of the system were evaluated by considering a coal as fuel and CuO supported on zirconia as oxygen carrier. A kinetic scheme comprising both heterogeneous and homogeneous reactions occurring in the MFB was considered. The methanation unit was modelled developing a thermodynamic calculation method based on minimization of the free Gibbs energy. The performance of the system was evaluated by considering that the CO/CO2 stream coming from the t-FR reacts over Ni supported on alumina catalyst with a pure H2 stream generated by an array of electrolysis cells. The number of cells to be stacked in the array was evaluated by considering that a constant H2 production able to convert the whole CO/CO2 stream produced by the CLC process should be attained. The environmental performance of the proposed process was quantified using the Life Cycle Assessment (LCA) methodology. The analysis shows i) that the majority originate from the production and disposal of the oxygen carrier used in the t-FR, and ii) that reusing part of the oxygen produced by the electrolysis cells improves significantly the environmental performance of the proposed process

    Modelling of sorption-enhanced steam methane reforming in a fixed bed reactor network integrated with fuel cell

    Get PDF
    In this study sorption-enhanced steam methane reforming (SE-SMR) in fixed beds is investigated by means of 1D numerical modelling, and the model is validated with the data reported in the literature. Isothermal conditions (973 K) are considered, and the equilibrium between the carbonation and calcination stages is shifted by a pressure swing: 3.5 · 106 Pa and 1013 Pa, respectively. The results showed that under these operating conditions at least 8 reactors in parallel are required to continuously produce a high-purity stream of H2, and a separated stream of concentrated CO2. The average H2 purity is 0.92, whilst the average H2 yield and selectivity are 2.9 molH2 molCH4−1 and 90%, respectively. A thermodynamic analysis was performed, which highlighted that, by using a portion of the produced H2 (about 0.4 molH2 molCH4−1), it is possible to fully cover heat and power demands of the process, making it completely energy self-sufficient. In the case when the proposed SE-SMR is integrated with a solid oxide fuel cell, net power generation at the scale of ∼950 kWel can be achieved with a net efficiency of the entire system of 51%, with the important feature that CO2 is concentrated

    Techno-economic analysis of sorption-enhanced steam methane reforming in a fixed bed reactor network integrated with fuel cell

    Get PDF
    Sorption-enhanced steam methane reforming (SE-SMR) is a promising alternative for H2 production with inherent CO2 capture. This study evaluates the techno-economic performance of SE-SMR in a network of fixed beds and its integration with a solid oxide fuel cell (SE-SMR-SOFC) for power generation. The analysis revealed that both proposed systems are characterised by better economic performance than the reference systems. In particular, for SE-SMR the levelised cost of hydrogen is 1.6 €⋅kg−1 and the cost of CO2 avoided is 29.9 €⋅tCO2−1 (2.4 €⋅kg−1 and 50 €⋅tCO2−1, respectively, for SMR with CO2 capture) while for SE-SMR-SOFC the levelised cost of electricity is 0.078 €⋅kWh−1 and the cost of CO2 avoided is 36.9 €⋅tCO2−1 (0.080 €⋅kWh−1 and 80 €⋅tCO2−1, respectively, for natural gas-fired power plant with carbon capture). The sensitivity analysis showed that the specific cost of fuel and the capital cost of fuel cell mainly affect the economic performance of SE-SMR and SE-SMR-SOFC, respectively. The daily revenue of the SE-SMR-SOFC system is higher than that of the natural gas-fired power plant if the difference between the carbon tax and the CO2 transport and storage cost is > 6 €⋅tCO2−1

    Feasibility of CaO/CuO/NiO sorption-enhanced steam methane reforming integrated with solid-oxide fuel cell for near-zero-CO2 emissions cogeneration system

    Get PDF
    In this article, a process for sorption-enhanced steam methane reforming in an adiabatic fixed-bed reactor coupled with a solid oxide fuel cell (SOFC) is evaluated using a 1D numerical reactor model combined with a simplified fuel cell simulation. A novel material comprising CaO/CuO/Al2O3(NiO) pellets is considered. Three operating stages are considered in the proposed system, namely (i) CaO carbonation/reforming, (ii) Cu and Ni oxidation, and (iii) CaCO3 calcination/CuO and NiO reduction. The operating conditions that enable cyclic operation of these stages and the strategy needed to switch between each stage are evaluated. Under the adopted control strategy, methane conversion was about 95%, whilst H2 yield and purity were around 3.2 molH2 molCH4−1 and 90%, respectively. Moreover, a concentrated CO2 stream ready for storage was obtained. By using a portion of the produced H2 to make the process self-sufficient from an energy standpoint, an equivalent H2 yield and a reforming efficiency of about 2.8 molH2 molCH4−1 and 84% were achieved, respectively. With respect to SOFC integration, net power and thermal energy generation of around 11 kW and 6 kW, respectively, can be achieved. With respect to the chemical energy of the inlet methane, the net electrical and thermal efficiencies of the considered process are 56% and 30%, respectively, i.e., the overall efficiency of the entire system is 86%. The proposed cogeneration system showed better thermodynamic, environmental and economic performances than those of conventional systems, with an investment pay-back period of 2.2 years in the worst-case scenario. The levelised cost of electricity, of heat and total power were about 0.096 € kW h−1, 0.19 € kW h−1, and 0.065 € kW h−1, respectively, while the CO2 emissions were avoided at no cost

    Technoeconomic analysis of a fixed bed system for single/two–stage chemical looping combustion

    Get PDF
    Chemical looping combustion (CLC) is a promising carbon capture technology allowing integration with high-efficiency Brayton cycles for energy production and yielding a concentrated CO2 stream without requiring air separation units. Recently, dynamically operated fixed bed reactors have been proposed and investigated for CLC. This study deals with the technoeconomic assessment of a CLC process performed in packed beds. Following a previously published work on the topic, two different configurations are considered: one relying on a single oxygen carrier (Cu/CuO based) and the other on two in–series oxygen carriers (Cu/CuO based first, Ni/NiO based later). For both configurations, relevant process schemes are devised to obtain continuous power generation. Despite slightly larger capital costs, two-stage CLC performs better in terms of efficiency, levelized cost of electricity, and avoided CO2 costs. Fuel price and high–temperature valves costs are identified as the main variables influencing the economic performance. The use of two in–parallel packed bed reactors (2.0 m length, 0.7 m internal diameter) enables a power output of 386 kWe, a net electric efficiency of 37.2%, a levelized cost of electricity of 91 € MWhe −1, and avoided CO2 costs of 55 € tonCO2 −1 with respect to a reference pulverized coal power plant

    Experimental study of dense pyroclastic density currents using sustained, gas-fluidized granular flows

    Get PDF
    © 2014, Springer-Verlag Berlin Heidelberg. We present the results of laboratory experiments on the behaviour of sustained, dense granular flows in a horizontal flume, in which high-gas pore pressure was maintained throughout the flow duration by continuous injection of gas through the flume base. The flows were fed by a sustained (0.5–30 s) supply of fine (75 ± 15 μm) particles from a hopper; the falling particles impacted an impingement surface at concentrations of ~3 to 45 %, where they densified rapidly to generate horizontally moving, dense granular flows. When the gas supplied through the flume base was below the minimum fluidization velocity of the particles (i.e. aerated flow conditions), three flow phases were identified: (i) an initial dilute spray of particles travelling at 1–2 m s−1, followed by (ii) a dense granular flow travelling at 0.5–1 m s−1, then by (iii) sustained aggradation of the deposit by a prolonged succession of thin flow pulses. The maximum runout of the phase 2 flow was linearly dependent on the initial mass flux, and the frontal velocity had a square-root dependence on mass flux. The frontal propagation speed during phase 3 had a linear relationship with mass flux. The total mass of particles released had no significant control on either flow velocity or runout in any of the phases. High-frequency flow unsteadiness during phase 3 generated deposit architectures with progradational and retrogradational packages and multiple internal erosive contacts. When the gas supplied through the flume base was equal to the minimum fluidization velocity of the particles (i.e. fluidized flow conditions), the flows remained within phase 2 for their entire runout, no deposit formed and the particles ran off the end of the flume. Sustained granular flows differ significantly from instantaneous flows generated by lock-exchange mechanisms, in that the sustained flows generate (by prolonged progressive aggradation) deposits that are much thicker than the flowing layer of particles at any given moment. The experiments offer a first attempt to investigate the physics of the sustained pyroclastic flows that generate thick, voluminous ignimbrites

    Shear-assisted fluidized bed powder-coating

    No full text
    This study addresses a novel concept of dense-fluidized bed coating of objects where the effectiveness of coating is promoted by the intentional and controlled establishment of shear flow around the object. The fluidized powder is sheared by the controlled oscillatory motion of the object with respect to the fluidized bed. The proof-of-concept is given with experiments carried out using a commercial powder specifically manufactured for dry coating applications in fluidized bed. Systematic analysis of the effect of different levels of shear rate on particle mobility/adhesion and effectiveness of coverage was performed. A simple model has been developed to provide a mechanistic framework for the interpretation of the results. (C) 2011 Elsevier B.V. All rights reserved

    Influence of process parameters on fluidised bed drying of powdered materials

    No full text
    The present study reports experimental results concerning the characterization of powdered-material fluidised-bed drying processes. A number of test were carried out in a Lexan® lab-scale fluidised bed with solids selected to effectively surrogate powders of interest in various industrial applications. In particular, pharmaceuticals and adsorption pellets manufactures were of interest. The effects of the temperature and the flow rate of the fluidising gas on the granulation issues were assessed. Experimental results were further worked out to highlight the effects of inlet air temperature and velocity on process thermal efficiency. Bed material was characterized to assess the modifications of the population of agglomerates as a function of the operating conditions
    corecore