131 research outputs found

    Analysis of LhcSR3, a Protein Essential for Feedback De-Excitation in the Green Alga Chlamydomonas reinhardtii

    Get PDF
    To prevent photodamage by excess light, plants use different proteins to sense pH changes and to dissipate excited energy states. In green microalgae, however, the LhcSR3 gene product is able to perform both pH sensing and energy quenching functions

    High Light Induced Disassembly of Photosystem II Supercomplexes in Arabidopsis Requires STN7-Dependent Phosphorylation of CP29

    Get PDF
    Photosynthetic oxidation of water and production of oxygen by photosystem II (PSII) in thylakoid membranes of plant chloroplasts is highly affected by changes in light intensities. To minimize damage imposed by excessive sunlight and sustain the photosynthetic activity PSII, organized in supercomplexes with its light harvesting antenna, undergoes conformational changes, disassembly and repair via not clearly understood mechanisms. We characterized the phosphoproteome of the thylakoid membranes from Arabidopsis thaliana wild type, stn7, stn8 and stn7stn8 mutant plants exposed to high light. The high light treatment of the wild type and stn8 caused specific increase in phosphorylation of Lhcb4.1 and Lhcb4.2 isoforms of the PSII linker protein CP29 at five different threonine residues. Phosphorylation of CP29 at four of these residues was not found in stn7 and stn7stn8 plants lacking the STN7 protein kinase. Blue native gel electrophoresis followed by immunological and mass spectrometric analyses of the membrane protein complexes revealed that the high light treatment of the wild type caused redistribution of CP29 from PSII supercomplexes to PSII dimers and monomers. A similar high-light-induced disassembly of the PSII supercomplexes occurred in stn8, but not in stn7 and stn7stn8. Transfer of the high-light-treated wild type plants to normal light relocated CP29 back to PSII supercomplexes. We postulate that disassembly of PSII supercomplexes in plants exposed to high light involves STN7-kinase-dependent phosphorylation of the linker protein CP29. Disruption of this adaptive mechanism can explain dramatically retarded growth of the stn7 and stn7stn8 mutants under fluctuating normal/high light conditions, as previously reported

    Fine control of chlorophyll-carotenoid interactions defines the functionality of light-harvesting proteins in plants

    Get PDF
    V.B. and C.D.P.D. acknowledge the support from the Leverhulme Trust RPG-2015-337. This research utilized Queen Mary’s MidPlus computational facilities, supported by QMUL Research-IT and funded by EPSRC grant EP/K000128/1. W.P.B acknowledges support from the Photosynthetic Antenna Research Center (PARC), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award DE-SC0001035 for initial development of the TDC calculation code, as well as support from Army Research Office (ARO-MURI) Award W911NF1210420 for further development

    "Dynamic" biological exposure indexes for n-hexane and 2,5-hexanedione, suggested by a physiologically based pharmacokinetic model

    No full text
    Biological exposure index (BEI) of n-hexane was studied for accuracy using a physiologically based pharmacokinetic (PB-PK) model. The kinetics of n-hexane in alveolar air, blood, urine, and other tissues were simulated for different values of alveolar ventilations and also for constant and variable exposures. The kinetics of 2,5-hexanedione, the toxic n-hexane metabolite, were also simulated. The ranges of n-hexane concentrations in biological media and the urinary concentrations of 2,5-hexanedione are discussed in connection with a mean n-hexane exposure of 180 mg/m3 (50 ppm) (threshold limit value [TLV] suggested by American Conference of Governmental Industrial Hygienists [ACGIH] for 1988-89). The experimental and field data as well as those predicted by simulation with the PB-PK model were comparable. The physiological-pharmacokinetic simulations are used to propose the "dynamic" BEIs of n-hexane and 2,5-hexanedione. The use of simulation with PB-PK models enables a better understanding of the limits, advantages, and issues associated with biological monitoring of exposures to industrial solvents

    Physiologicomathematical model for studying human exposure to organic solvents: kinetics of blood/tissue n-hexane concentrations and of 2,5-hexanedione in urine.

    No full text
    The physiologicomathematical model with eight compartments described allows the simulation of the absorbtion, distribution, biotransformation, excretion of an organic solvent, and the kinetics of its metabolites. The usual compartments of the human organism (vessel rich group, muscle group, and fat group) are integrated with the lungs, the metabolising tissues, and three other compartments dealing with the metabolic kinetics (biotransformation, water, and urinary compartments). The findings obtained by mathematical simulation of exposure to n-hexane were compared with data previously reported. The concentrations of n-hexane in alveolar air and in venous blood described both in experimental and occupational exposures provided a substantial validation for the data obtained by mathematical simulation. The results of the urinary excretion of 2,5-hexanedione given by the model were in good agreement with data already reported. The simulation of an exposure to n-hexane repeated five days a week suggested that the solvent accumulates in the fat tissue. The half life of n-hexane in fat tissue equalled 64 hours. The kinetics of 2,5-hexanedione resulting from the model suggest that occupational exposure results in the presence of large amounts of 2,5-hexanedione in the body for the whole working week
    corecore