738 research outputs found

    Hourly data for evaluating the carbon dioxide emission factor of heat pumps or other devices connected to the Italian grid

    Get PDF
    This data article includes an elaboration of carbon dioxide data available from three different online sources in the years from 2016 to 2019. The data article refers to the paper “Interpolating functions for CO2 emission factors in dynamic simulations: the special case of a heat pump” by the same authors. The data are provided on an hourly basis and are useful to determine the carbon dioxide emission of an electric heat pump or other devices connected to the Italian grid. The importance of the provided data is related to the possibility of having an accurate estimation of the CO2 emission when the device works for only a limited period of time during the year or day. Moreover, since the given data are provided in electronic format (.txt file or .xlsx spreadsheet) they are very useful to perform dynamic simulation using self-made or commercial software such as Trnsys, Energy Plus etc

    A Long-Term Dynamic Analysis of Heat Pumps Coupled to Ground Heated by Solar Collectors

    Get PDF
    In agreement with the decarbonization of the building sector to meet the 2050 climate neutrality targets, borehole thermal storage for solar energy represents a potential solution to increase the energy efficiency of renewable energy plants. As is well known, electricity is not the optimum solution to integrate large inflows of fluctuating renewable energy. In the present paper, we investigate the possibility to use the solar collector to give energy to the borehole field. In detail, a solar-assisted geothermal heat pump is applied to a school located in Milan, Italy. In winter, both the energy from the solar collector and the heat pump are collected into a storage tank connected to the emission terminals, whereas, in summer, as there is no energy demand, the hot water from the solar collector flows into the geothermal probes. By means of this seasonal thermal energy storage technology, the intermittent solar energy collected and stored during the summer months can be utilized during the winter months when the heating demand is high. A long-term dynamic analysis is performed by employing Trnsys. The results show that solar collectors coupled with ground-source heat pumps can give an important contribution to the soil temperature drift, and this also applies in cases of un-balanced loads during the heating season. Moreover, the employment of solar collectors increases the seasonal coefficient of performance of the heat pumps and may rise to reductions to the probes field

    Parking and the visual perception of space

    Full text link
    Using measured data we demonstrate that there is an amazing correspondence among the statistical properties of spacings between parked cars and the distances between birds perching on a power line. We show that this observation is easily explained by the fact that birds and human use the same mechanism of distance estimation. We give a simple mathematical model of this phenomenon and prove its validity using measured data

    Influence of different heating systems on thermal comfort perception: a dynamic and CFD analysis

    Get PDF
    In this paper, we investigate the influence of different heating systems on the thermal comfort indexes, Predicted Mean Vote (PMV) and Predicted Percentage of Dissatisfied (PPD), for a residential apartment located in Bologna (Italy). The apartment has an area of 40 m2 and is located on the ground floor of 4 floors building. The envelop consists in horizontal perforated bricks with internal thermal insulation material and two windows. The analyses are performed employing Trnsys, a commercial dynamic simulation software and Simcenter STAR-CCM+, a multiphysics computational fluid dynamics (CFD) software. The CFD analysis regards a steady condition of a typical winter day in Bologna. Thermal comfort indexes and thermal energy demand are studied comparing two different heating generation systems existing in the considered apartment: a condensing gas boiler coupled with radiators as terminal emitters and an air-to-air heat pump. By crossing the results obtained by the dynamical approach and by the CFD simulations, a two-objective methodology where energy consumption is minimised while thermal comfort is obtained, is presented

    Effects of anisotropic interactions on the structure of animal groups

    Full text link
    This paper proposes an agent-based model which reproduces different structures of animal groups. The shape and structure of the group is the effect of simple interaction rules among individuals: each animal deploys itself depending on the position of a limited number of close group mates. The proposed model is shown to produce clustered formations, as well as lines and V-like formations. The key factors which trigger the onset of different patterns are argued to be the relative strength of attraction and repulsion forces and, most important, the anisotropy in their application.Comment: 22 pages, 9 figures. Submitted. v1-v4: revised presentation; extended simulations; included technical results. v5: added a few clarification

    Activation of P2X(7) receptors stimulates the expression of P2Y(2) receptor mRNA in astrocytes cultured from rat brain.

    Get PDF
    Under pathological conditions brain cells release ATP at concentrations reported to activate P2X7 ionotropic receptor subtypes expressed in both neuronal and glial cells. In the present study we report that the most potent P2X7 receptor agonist BzATP stimulates the expression of the metabotropic ATP receptor P2Y2 in cultured rat brain astrocytes. In other cell types several kinds of stimulation, including stress or injury, induce P2Y2 expression that, in turn, is involved in different cell reactions. Similarly, it has recently been found that in astrocytes and astrocytoma cells P2Y2 sites can trigger neuroprotective pathways through the activation of several mechanisms, including the induction of genes for antiapoptotic factors, neurotrophins, growth factors and neuropeptides. Here we present evidence that P2Y2 mRNA expression in cultured astrocytes peaks 6 h after BzATP exposure and returns to basal levels after 24 h. This effect was mimicked by high ATP concentrations (1 mM) and was abolished by P2X7-antagonists oATP and BBG. The BzATP-evoked P2Y2 receptor up-regulation in cultured astrocytes was coupled to an increased UTP-mediated intracellular calcium response. This effect was inhibited by oATP and BBG and by P2Y2siRNA, thus supporting evidence of increased P2Y2 activity. To further investigate the mechanisms by which P2X7 receptors mediated the P2Y2 mRNA up-regulation, the cells were pre-treated with the chelating agent EGTA, or with inhibitors of mitogen-activated kinase (MAPK) (PD98059) or protein kinase C, (GF109203X). Each inhibitor significantly reduced the extent to which BzATP induced P2Y2 mRNA. Both BzATP and ATP (1 mM) increased ERK1/2 activation. P2X7-induced ERK1/2 phosphorylation was unaffected by pre-treatment of astrocytes with EGTA whereas it was inhibited by GF109203X. Phorbol-12-myristate-13-acetate (PMA), an activator of PKCs, rapidly increased ERK1/2 activation. We conclude that activation of P2X7 receptors in astrocytes enhances P2Y2 mRNA expression by a mechanism involving both calcium influx and PKC/MAPK signalling pathways

    TTRV30M oligomeric aggregates inhibit proliferation of renal progenitor cells but maintain their capacity to differentiate into podocytes in vitro

    Get PDF
    Publicado em: The Proceedings of the XIIIth International Symposium on Amyloidosis, May 6-10, 2012, Groningen, The NetherlandsIn Familial Amyloidotic Polyneuropathy, the amyloid deposition of mutant transthyretin TTR V30M can lead to renal complications. An unexplored mechanism is the toxicity of oligomeric TTR aggregates. A subset of renal progenitor cells (RPC) in the adult human kidney can induce regeneration of podocytes and tubular structures of the nephron, which can be critical for preventing irreversible renal failure. We assessed whether RPC are vulnerable, in vitro, to TTRV30M oligomers. RPC proliferation was reduced by 16.3±9.7% and 32.6±6.3% after 48 and 72 hours, respectively, in the presence of the oligomers. However, oligomers did not induce apoptosis or alterations in cell cycle to any significant extent, and did not influence RPC differentiation into podocytes. From this first attempt, we can say that TTRV30M oligomers inhibit RPC proliferation but do not influence their capacity to differentiate into mature podocytes, and thus should not compromise tissue regeneration.FC

    Of `Cocktail Parties' and Exoplanets

    Full text link
    The characterisation of ever smaller and fainter extrasolar planets requires an intricate understanding of one's data and the analysis techniques used. Correcting the raw data at the 10^-4 level of accuracy in flux is one of the central challenges. This can be difficult for instruments that do not feature a calibration plan for such high precision measurements. Here, it is not always obvious how to de-correlate the data using auxiliary information of the instrument and it becomes paramount to know how well one can disentangle instrument systematics from one's data, given nothing but the data itself. We propose a non-parametric machine learning algorithm, based on the concept of independent component analysis, to de-convolve the systematic noise and all non-Gaussian signals from the desired astrophysical signal. Such a `blind' signal de-mixing is commonly known as the `Cocktail Party problem' in signal-processing. Given multiple simultaneous observations of the same exoplanetary eclipse, as in the case of spectrophotometry, we show that we can often disentangle systematic noise from the original light curve signal without the use of any complementary information of the instrument. In this paper, we explore these signal extraction techniques using simulated data and two data sets observed with the Hubble-NICMOS instrument. Another important application is the de-correlation of the exoplanetary signal from time-correlated stellar variability. Using data obtained by the Kepler mission we show that the desired signal can be de-convolved from the stellar noise using a single time series spanning several eclipse events. Such non-parametric techniques can provide important confirmations of the existent parametric corrections reported in the literature, and their associated results. Additionally they can substantially improve the precision exoplanetary light curve analysis in the future.Comment: ApJ accepte

    Dynamical modeling of collective behavior from pigeon flight data: flock cohesion and dispersion

    Get PDF
    Several models of flocking have been promoted based on simulations with qualitatively naturalistic behavior. In this paper we provide the first direct application of computational modeling methods to infer flocking behavior from experimental field data. We show that this approach is able to infer general rules for interaction, or lack of interaction, among members of a flock or, more generally, any community. Using experimental field measurements of homing pigeons in flight we demonstrate the existence of a basic distance dependent attraction/repulsion relationship and show that this rule is sufficient to explain collective behavior observed in nature. Positional data of individuals over time are used as input data to a computational algorithm capable of building complex nonlinear functions that can represent the system behavior. Topological nearest neighbor interactions are considered to characterize the components within this model. The efficacy of this method is demonstrated with simulated noisy data generated from the classical (two dimensional) Vicsek model. When applied to experimental data from homing pigeon flights we show that the more complex three dimensional models are capable of predicting and simulating trajectories, as well as exhibiting realistic collective dynamics. The simulations of the reconstructed models are used to extract properties of the collective behavior in pigeons, and how it is affected by changing the initial conditions of the system. Our results demonstrate that this approach may be applied to construct models capable of simulating trajectories and collective dynamics using experimental field measurements of herd movement. From these models, the behavior of the individual agents (animals) may be inferred
    corecore