3,525 research outputs found
Random sequential adsorption and diffusion of dimers and k-mers on a square lattice
We have performed extensive simulations of random sequential adsorption and
diffusion of -mers, up to in two dimensions with particular attention
to the case . We focus on the behavior of the coverage and of vacancy
dynamics as a function of time. We observe that for a complete coverage
of the lattice is never reached, because of the existence of frozen
configurations that prevent isolated vacancies in the lattice to join. From
this result we argue that complete coverage is never attained for any value of
. The long time behavior of the coverage is not mean field and nonanalytic,
with as leading term. Long time coverage regimes are independent of
the initial conditions while strongly depend on the diffusion probability and
deposition rate and, in particular, different values of these parameters lead
to different final values of the coverage. The geometrical complexity of these
systems is also highlighted through an investigation of the vacancy population
dynamics.Comment: 9 pages, 9 figures, to be published in the Journal of Chemical
Physic
Somatostatin agonist pasireotide inhibits exercise stimulated growth in the male Siberian hamster (Phodopus sungorus)
R.Dumbell was supported by a University of Aberdeen PhD studentship and a research visit grant awarded by the British Society of Neuroendocrinology. Further support was provided by the Scottish Government Rural and Environment Science and Analytical Services Division (Barrett and the German Research Foundation (DFG; STE 331/8-1; Steinlechner lab). We are grateful for technical assistance from Dana Wilson at RINH and Siegried Hiliken at UVMH, and thank Dr Claus-Dieter Mayer of Biomathematics & Statistics Scotland for valuable advice on statistical analysis.Peer reviewedPostprin
Statistical properties of acoustic emission signals from metal cutting processes
Acoustic Emission (AE) data from single point turning machining are analysed
in this paper in order to gain a greater insight of the signal statistical
properties for Tool Condition Monitoring (TCM) applications. A statistical
analysis of the time series data amplitude and root mean square (RMS) value at
various tool wear levels are performed, �nding that ageing features can
be revealed in all cases from the observed experimental histograms. In
particular, AE data amplitudes are shown to be distributed with a power-law
behaviour above a cross-over value. An analytic model for the RMS values
probability density function (pdf) is obtained resorting to the Jaynes' maximum
entropy principle (MEp); novel technique of constraining the modelling function
under few fractional moments, instead of a greater amount of ordinary moments,
leads to well-tailored functions for experimental histograms.Comment: 16 pages, 7 figure
The effects of antibiotic combination treatments on Pseudomonas aeruginosa tolerance evolution and coexistence with Stenotrophomonas maltophilia
Pseudomonas aeruginosa bacterium is a common pathogen of Cystic Fibrosis (CF) patients due to its ability to evolve resistance to antibiotics during treatments. While P. aeruginosa resistance evolution is well characterised in monocultures, it is less well understood in polymicrobial CF infections. Here, we investigated how exposure to ciprofloxacin, colistin, or tobramycin antibiotics, administered at sub-MIC doses alone and in combination, shaped the tolerance evolution of P. aeruginosa (PAO1 lab and clinical CF LESB58 strains) in the absence and presence of a commonly co-occurring species, Stenotrophomonas maltophilia. Increases in antibiotic tolerances were primarily driven by the presence of that antibiotic in the treatment. We observed a reciprocal cross-tolerance between ciprofloxacin and tobramycin, and when combined these antibiotics selected increased MICs for all antibiotics. Though the presence of S. maltophilia did not affect the tolerance or the MIC evolution, it drove P. aeruginosa into extinction more frequently in the presence of tobramycin due to its relatively greater innate tobramycin tolerance. In contrast, P. aeruginosa dominated and drove S. maltophilia extinct in most other treatments. Together, our findings suggest that besides driving high-level antibiotic tolerance evolution, sub-MIC antibiotic exposure can alter competitive bacterial interactions, leading to target pathogen extinctions in multi-species communities.Funding provided by: University of YorkCrossref Funder Registry ID: http://dx.doi.org/10.13039/100009001Award Number:See Methods in paper for collection. MIC values (MIC data.csv) derived from visual inspection of antibiotic growth measurements plotted as a growth curve.
Optical density data has been blank-corrected, and in the case of the antibiotic growth measurements (Antibiotic growth data.csv) averaged over ≤3 technical replicates
3-(3-Bromophenyl)-7-acetoxycoumarin
In natural product synthesis, the procurement of easily accessible starting materials is crucial. Chromenones and their subclass, coumarins, are a wide family of small, oxygen-containing aromatic heterocycles. Phenylcoumarins offer a particularly excellent starting point for a diverse chemical space of natural products, and thus are excellent staring materials for more complex natural products. Herein, we report an efficient synthesis of an easily accessible 3-phenylcoumarin bearing two orthogonally substitutable groups, bromine, and an acetyl-protected phenylic hydroxyl group
A perturbative approach to the Bak-Sneppen Model
We study the Bak-Sneppen model in the probabilistic framework of the Run Time
Statistics (RTS). This model has attracted a large interest for its simplicity
being a prototype for the whole class of models showing Self-Organized
Criticality. The dynamics is characterized by a self-organization of almost all
the species fitnesses above a non-trivial threshold value, and by a lack of
spatial and temporal characteristic scales. This results in {\em avalanches} of
activity power law distributed. In this letter we use the RTS approach to
compute the value of , the value of the avalanche exponent and the
asymptotic distribution of minimal fitnesses.Comment: 4 pages, 3 figures, to be published on Physical Review Letter
Two Algebraic Process Semantics for Contextual Nets
We show that the so-called 'Petri nets are monoids' approach initiated by Meseguer and Montanari can be extended from ordinary place/transition Petri nets to contextual nets by considering suitable non-free monoids of places. The algebraic characterizations of net concurrent computations we provide cover both the collective and the individual token philosophy, uniformly along the two interpretations, and coincide with the classical proposals for place/transition Petri nets in the absence of read-arcs
Energy constrained sandpile models
We study two driven dynamical systems with conserved energy. The two automata
contain the basic dynamical rules of the Bak, Tang and Wiesenfeld sandpile
model. In addition a global constraint on the energy contained in the lattice
is imposed. In the limit of an infinitely slow driving of the system, the
conserved energy becomes the only parameter governing the dynamical
behavior of the system. Both models show scale free behavior at a critical
value of the fixed energy. The scaling with respect to the relevant
scaling field points out that the developing of critical correlations is in a
different universality class than self-organized critical sandpiles. Despite
this difference, the activity (avalanche) probability distributions appear to
coincide with the one of the standard self-organized critical sandpile.Comment: 4 pages including 3 figure
Acoustic Emission from crumpling paper
From magnetic systems to the crust of the earth, many physical systems that
exibit a multiplicty of metastable states emit pulses with a broad power law
distribution in energy. Digital audio recordings reveal that paper being
crumpled, a system that can be easily held in hand, is such a system. Crumpling
paper both using the traditional hand method and a novel cylindrical geometry
uncovered a power law distribution of pulse energies spanning at least two
decades: (exponent 1.3 - 1.6) Crumpling initally flat sheets into a compact
ball (strong crumpling), we found little or no evidence that the energy
distribution varied systematically over time or the size of the sheet. When we
applied repetitive small deformations (weak crumpling) to sheets which had been
previously folded along a regular grid, we found no systematic dependence on
the grid spacing. Our results suggest that the pulse energy depends only weakly
on the size of the paper regions responsible for sound production.Comment: 12 pages of text, 9 figures, submitted to Phys. Rev. E, additional
information availible at http://www.msc.cornell.edu/~houle/crumpling
Clostridioides difficile binary toxin binding component (cdtb) increases virulence in a hamster model
Background
Clostridioides difficile is the leading cause of hospital-acquired gastrointestinal infection, in part due to the existence of binary toxin (CDT)-expressing hypervirulent strains. Although the effects of the CDT holotoxin on disease pathogenesis have been previously studied, we sought to investigate the role of the individual components of CDT during in vivo infection.
Methods
To determine the contribution of the separate components of CDT during infection, we developed strains of C difficile expressing either CDTa or CDTb individually. We then infected both mice and hamsters with these novel mutant strains and monitored them for development of severe illness.
Results
Although expression of CDTb without CDTa did not induce significant disease in a mouse model of C difficile infection, we found that complementation of a CDT-deficient C difficile strain with CDTb alone restored virulence in a hamster model of C difficile infection.
Conclusions
Overall, this study demonstrates that the binding component of C difficile binary toxin, CDTb, contributes to virulence in a hamster model of infection
- …