7,570 research outputs found

    Gating-induced large aqueous volumetric remodeling and aspartate tolerance in the voltage sensor domain of Shaker K+ channels

    Get PDF
    Indexación: Scopus.ACKNOWLEDGMENTS. We thank Chris Lingle and Yu Zhou (Washington University) for critical reading of the manuscript and Victoria Prado for Xenopus care and oocyte preparation. We also thank Millennium Scientific Initiative P029-022-F. This work was supported by Fondecyt Postdoctoral Grants 3170599 (to I.D.-F.) and 3160321 (to H.M.).Neurons encode electrical signals with critically tuned voltage-gated ion channels and enzymes. Dedicated voltage sensor domains (VSDs) in these membrane proteins activate coordinately with an unresolved structural change. Such change conveys the transmembrane translocation of four positively charged arginine side chains, the voltage-sensing residues (VSRs; R1–R4). Countercharges and lipid phosphohead groups likely stabilize these VSRs within the low-dielectric core of the protein. However, the role of hydration, a sign-independent charge stabilizer, remains unclear. We replaced all VSRs and their neighboring residues with negatively charged aspartates in a voltage-gated potassium channel. The ensuing mild functional effects indicate that hydration is also important in VSR stabilization. The voltage dependency of the VSR aspartate variants approached the expected arithmetic summation of charges at VSR positions, as if negative and positive side chains faced similar pathways. In contrast, aspartates introduced between R2 and R3 did not affect voltage dependence as if the side chains moved outside the electric field or together with it, undergoing a large displacement and volumetric remodeling. Accordingly, VSR performed osmotic work at both internal and external aqueous interfaces. Individual VSR contributions to volumetric works approached arithmetical additivity but were largely dissimilar. While R1 and R4 displaced small volumes, R2 and R3 volumetric works were massive and vectorially opposed, favoring large aqueous remodeling during VSD activation. These diverse volumetric works are, at least for R2 and R3, not compatible with VSR translocation across a unique stationary charge transfer center. Instead, VSRs may follow separated pathways across a fluctuating low-dielectric septum. © National Academy of Sciences. All rights reserved.https://www.pnas.org/content/115/32/820

    Formation of atom wires on vicinal silicon

    Full text link
    The formation of atomic wires via pseudomorphic step-edge decoration on vicinal silicon surfaces has been analyzed for Ga on the Si(112) surface using Scanning Tunneling Microscopy and Density Functional Theory calculations. Based on a chemical potential analysis involving more than thirty candidate structures and considering various fabrication procedures, it is concluded that pseudomorphic growth on stepped Si(112), both under equilibrium and non-equilibrium conditions, must favor formation of Ga zig-zag chains rather than linear atom chains. The surface is non-metallic and presents quasi-one dimensional character in the lowest conduction band.Comment: submitte

    Present and future of the OTELO project

    Full text link
    OTELO is an emission-line object survey carried out with the red tunable filter of the instrument OSIRIS at the GTC, whose aim is to become the deepest emission-line object survey to date. With 100% of the data of the first pointing finally obtained in June 2014, we present here some aspects of the processing of the data and the very first results of the OTELO survey. We also explain the next steps to be followed in the near future.Comment: Oral contribution presented in the XI Scientific Meeting of the Spanish Astronomical Society held on September 8-12, in Teruel, Spain (7 pages, 2 figures, 1 table). To appear in Highlights of Spanish Astrophysics VIII, Proceedings of the XI Scientific Meeting of the Spanish Astronomical Society. Eds. A. J. Cenarro, F. Figueras, C. Hern\'andez-Monteagudo, J. Trujillo, L. Valdiviels

    A dark energy multiverse

    Get PDF
    We present cosmic solutions corresponding to universes filled with dark and phantom energy, all having a negative cosmological constant. All such solutions contain infinite singularities, successively and equally distributed along time, which can be either big bang/crunchs or big rips singularities. Classicaly these solutions can be regarded as associated with multiverse scenarios, being those corresponding to phantom energy that may describe the current accelerating universe

    ÂżExiste simetrĂ­a en la artrosis vertebral?

    Full text link
    X Congreso Nacional de PaleopatologĂ­a. Univesidad AutĂłnoma de Madrid, septiembre de 200
    • …
    corecore