22,877 research outputs found

    The Stationary Phase Method for a Wave Packet in a Semiconductor Layered System. The applicability of the method

    Full text link
    Using the formal analysis made by Bohm in his book, {\em "Quantum theory"}, Dover Publications Inc. New York (1979), to calculate approximately the phase time for a transmitted and the reflected wave packets through a potential barrier, we calculate the phase time for a semiconductor system formed by different mesoscopic layers. The transmitted and the reflected wave packets are analyzed and the applicability of this procedure, based on the stationary phase of a wave packet, is considered in different conditions. For the applicability of the stationary phase method an expression is obtained in the case of the transmitted wave depending only on the derivatives of the phase, up to third order. This condition indicates whether the parameters of the system allow to define the wave packet by its leading term. The case of a multiple barrier systems is shown as an illustration of the results. This formalism includes the use of the Transfer Matrix to describe the central stratum, whether it is formed by one layer (the single barrier case), or two barriers and an inner well (the DBRT system), but one can assume that this stratum can be comprise of any number or any kind of semiconductor layers.Comment: 15 pages, 4 figures although figure 4 has 5 graph

    Supersymmetric free-damped oscillators: Adaptive observer estimation of the Riccati parameter

    Full text link
    A supersymmetric class of free damped oscillators with three parameters has been obtained in 1998 by Rosu and Reyes through the factorization of the Newton equation. The supplementary parameter is the integration constant of the general Riccati solution. The estimation of the latter parameter is performed here by employing the recent adaptive observer scheme of Besancon et al., but applied in a nonstandard form in which a time-varying quantity containing the unknown Riccati parameter is estimated first. Results of computer simulations are presented to illustrate the good feasibility of this approach for a case in which the estimation is not easily accomplished by other meansComment: 8 pages, 6 figure

    Formation of atom wires on vicinal silicon

    Full text link
    The formation of atomic wires via pseudomorphic step-edge decoration on vicinal silicon surfaces has been analyzed for Ga on the Si(112) surface using Scanning Tunneling Microscopy and Density Functional Theory calculations. Based on a chemical potential analysis involving more than thirty candidate structures and considering various fabrication procedures, it is concluded that pseudomorphic growth on stepped Si(112), both under equilibrium and non-equilibrium conditions, must favor formation of Ga zig-zag chains rather than linear atom chains. The surface is non-metallic and presents quasi-one dimensional character in the lowest conduction band.Comment: submitte

    Submillimeter H2O masers in water-fountain nebulae

    Get PDF
    We report the first detection of submillimeter water maser emission toward water-fountain nebulae, which are post-AGB stars that exhibit high-velocity water masers. Using APEX we found emission in the ortho-H2O (10_29-9_36) transition at 321.226 GHz toward three sources: IRAS 15445-5449, IRAS 18043-2116 and IRAS 18286-0959. Similarly to the 22 GHz masers, the submillimeter water masers are expanding with a velocity larger than that of the OH masers, suggesting that these masers also originate in fast bipolar outflows. In IRAS 18043-2116 and IRAS 18286-0959, which figure among the sources with the fastest water masers, the velocity range of the 321 GHz masers coincides with that of the 22 GHz masers, indicating that they likely coexist. Towards IRAS 15445-5449 the submillimeter masers appear in a different velocity range, indicating that they are tracing different regions. The intensity of the submillimeter masers is comparable to that of the 22 GHz masers, implying that the kinetic temperature of the region where the masers originate should be Tk > 1000 K. We propose that the passage of two shocks through the same gas can create the conditions necessary to explain the presence of strong high-velocity 321 GHz masers coexisting with the 22 GHz masers in the same region.Comment: 4 pages, 1 figure. Accepted for publication in A&A Letter

    A model for conservative chaos constructed from multi-component Bose-Einstein condensates with a trap in 2 dimensions

    Full text link
    To show a mechanism leading to the breakdown of a particle picture for the multi-component Bose-Einstein condensates(BECs) with a harmonic trap in high dimensions, we investigate the corresponding 2-dd nonlinear Schr{\"o}dinger equation (Gross-Pitaevskii equation) with use of a modified variational principle. A molecule of two identical Gaussian wavepackets has two degrees of freedom(DFs), the separation of center-of-masses and the wavepacket width. Without the inter-component interaction(ICI) these DFs show independent regular oscillations with the degenerate eigen-frequencies. The inclusion of ICI strongly mixes these DFs, generating a fat mode that breaks a particle picture, which however can be recovered by introducing a time-periodic ICI with zero average. In case of the molecule of three wavepackets for a three-component BEC, the increase of amplitude of ICI yields a transition from regular to chaotic oscillations in the wavepacket breathing.Comment: 5 pages, 4 figure

    On the nature of the near-UV extended light in Seyfert galaxies

    Get PDF
    We study the nature of the extended near-UV emission in the inner kiloparsec of a sample of 15 Seyfert galaxies which have both near-UV (F330W) and narrow band [OIII] high resolution Hubble images. For the majority of the objects we find a very similar morphology in both bands. From the [OIII] images we construct synthetic images of the nebular continuum plus the emission line contribution expected through the F330W filter, which can be subtracted from the F330W images. We find that the emission of the ionised gas dominates the near-UV extended emission in half of the objects. A further broad band photometric study, in the bands F330W (U), F547M (V) and F160W (H), shows that the remaining emission is dominated by the underlying galactic bulge contribution. We also find a blue component whose nature is not clear in 4 out of 15 objects. This component may be attributed to scattered light from the AGN, to a young stellar population in unresolved star clusters, or to early-disrupted clusters. Star forming regions and/or bright off-nuclear star clusters are observed in 4/15 galaxies of the sample.Comment: 23 pages, 6 figures, 3 tables; accepted for publication in MNRA

    Single-copy entanglement in a gapped quantum spin chain

    Get PDF
    The single-copy entanglement of a given many-body system is defined [J. Eisert and M. Cramer, Phys. Rev. A. 72, 042112 (2005)] as the maximal entanglement deterministically distillable from a bipartition of a single specimen of that system. For critical (gapless) spin chains, it was recently shown that this is exactly half the von Neumann entropy [R. Orus, J. I. Latorre, J. Eisert, and M. Cramer, Phys. Rev. A 73, 060303(R) (2006)], itself defined as the entanglement distillable in the asymptotic limit: i.e. given an infinite number of copies of the system. It is an open question as to what the equivalent behaviour for gapped systems is. In this paper, I show that for the paradigmatic spin-S Affleck-Kennedy-Lieb-Tasaki chain (the archetypal gapped chain), the single-copy entanglement is equal to the von Neumann entropy: i.e. all the entanglement present may be distilled from a single specimen.Comment: Typos corrected; accepted for publication in Phys. Rev. Lett.; comments welcom
    • 

    corecore