57 research outputs found
From St. Petersburg to Krushchev\u27s Boot
Program for the first annual RISD Cabaret held in Memorial Hall. Design and layout by Justin Kerr.https://digitalcommons.risd.edu/liberalarts_cabaret_programs/1000/thumbnail.jp
Canvass: a crowd-sourced, natural-product screening library for exploring biological space
NCATS thanks Dingyin Tao for assistance with compound characterization. This research was supported by the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH). R.B.A. acknowledges support from NSF (CHE-1665145) and NIH (GM126221). M.K.B. acknowledges support from NIH (5R01GM110131). N.Z.B. thanks support from NIGMS, NIH (R01GM114061). J.K.C. acknowledges support from NSF (CHE-1665331). J.C. acknowledges support from the Fogarty International Center, NIH (TW009872). P.A.C. acknowledges support from the National Cancer Institute (NCI), NIH (R01 CA158275), and the NIH/National Institute of Aging (P01 AG012411). N.K.G. acknowledges support from NSF (CHE-1464898). B.C.G. thanks the support of NSF (RUI: 213569), the Camille and Henry Dreyfus Foundation, and the Arnold and Mabel Beckman Foundation. C.C.H. thanks the start-up funds from the Scripps Institution of Oceanography for support. J.N.J. acknowledges support from NIH (GM 063557, GM 084333). A.D.K. thanks the support from NCI, NIH (P01CA125066). D.G.I.K. acknowledges support from the National Center for Complementary and Integrative Health (1 R01 AT008088) and the Fogarty International Center, NIH (U01 TW00313), and gratefully acknowledges courtesies extended by the Government of Madagascar (Ministere des Eaux et Forets). O.K. thanks NIH (R01GM071779) for financial support. T.J.M. acknowledges support from NIH (GM116952). S.M. acknowledges support from NIH (DA045884-01, DA046487-01, AA026949-01), the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program (W81XWH-17-1-0256), and NCI, NIH, through a Cancer Center Support Grant (P30 CA008748). K.N.M. thanks the California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board for support. B.T.M. thanks Michael Mullowney for his contribution in the isolation, elucidation, and submission of the compounds in this work. P.N. acknowledges support from NIH (R01 GM111476). L.E.O. acknowledges support from NIH (R01-HL25854, R01-GM30859, R0-1-NS-12389). L.E.B., J.K.S., and J.A.P. thank the NIH (R35 GM-118173, R24 GM-111625) for research support. F.R. thanks the American Lebanese Syrian Associated Charities (ALSAC) for financial support. I.S. thanks the University of Oklahoma Startup funds for support. J.T.S. acknowledges support from ACS PRF (53767-ND1) and NSF (CHE-1414298), and thanks Drs. Kellan N. Lamb and Michael J. Di Maso for their synthetic contribution. B.S. acknowledges support from NIH (CA78747, CA106150, GM114353, GM115575). W.S. acknowledges support from NIGMS, NIH (R15GM116032, P30 GM103450), and thanks the University of Arkansas for startup funds and the Arkansas Biosciences Institute (ABI) for seed money. C.R.J.S. acknowledges support from NIH (R01GM121656). D.S.T. thanks the support of NIH (T32 CA062948-Gudas) and PhRMA Foundation to A.L.V., NIH (P41 GM076267) to D.S.T., and CCSG NIH (P30 CA008748) to C.B. Thompson. R.E.T. acknowledges support from NIGMS, NIH (GM129465). R.J.T. thanks the American Cancer Society (RSG-12-253-01-CDD) and NSF (CHE1361173) for support. D.A.V. thanks the Camille and Henry Dreyfus Foundation, the National Science Foundation (CHE-0353662, CHE-1005253, and CHE-1725142), the Beckman Foundation, the Sherman Fairchild Foundation, the John Stauffer Charitable Trust, and the Christian Scholars Foundation for support. J.W. acknowledges support from the American Cancer Society through the Research Scholar Grant (RSG-13-011-01-CDD). W.M.W.acknowledges support from NIGMS, NIH (GM119426), and NSF (CHE1755698). A.Z. acknowledges support from NSF (CHE-1463819). (Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH); CHE-1665145 - NSF; CHE-1665331 - NSF; CHE-1464898 - NSF; RUI: 213569 - NSF; CHE-1414298 - NSF; CHE1361173 - NSF; CHE1755698 - NSF; CHE-1463819 - NSF; GM126221 - NIH; 5R01GM110131 - NIH; GM 063557 - NIH; GM 084333 - NIH; R01GM071779 - NIH; GM116952 - NIH; DA045884-01 - NIH; DA046487-01 - NIH; AA026949-01 - NIH; R01 GM111476 - NIH; R01-HL25854 - NIH; R01-GM30859 - NIH; R0-1-NS-12389 - NIH; R35 GM-118173 - NIH; R24 GM-111625 - NIH; CA78747 - NIH; CA106150 - NIH; GM114353 - NIH; GM115575 - NIH; R01GM121656 - NIH; T32 CA062948-Gudas - NIH; P41 GM076267 - NIH; R01GM114061 - NIGMS, NIH; R15GM116032 - NIGMS, NIH; P30 GM103450 - NIGMS, NIH; GM129465 - NIGMS, NIH; GM119426 - NIGMS, NIH; TW009872 - Fogarty International Center, NIH; U01 TW00313 - Fogarty International Center, NIH; R01 CA158275 - National Cancer Institute (NCI), NIH; P01 AG012411 - NIH/National Institute of Aging; Camille and Henry Dreyfus Foundation; Arnold and Mabel Beckman Foundation; Scripps Institution of Oceanography; P01CA125066 - NCI, NIH; 1 R01 AT008088 - National Center for Complementary and Integrative Health; W81XWH-17-1-0256 - Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program; P30 CA008748 - NCI, NIH, through a Cancer Center Support Grant; California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board; American Lebanese Syrian Associated Charities (ALSAC); University of Oklahoma Startup funds; 53767-ND1 - ACS PRF; PhRMA Foundation; P30 CA008748 - CCSG NIH; RSG-12-253-01-CDD - American Cancer Society; RSG-13-011-01-CDD - American Cancer Society; CHE-0353662 - National Science Foundation; CHE-1005253 - National Science Foundation; CHE-1725142 - National Science Foundation; Beckman Foundation; Sherman Fairchild Foundation; John Stauffer Charitable Trust; Christian Scholars Foundation)Published versionSupporting documentatio
Christianity as Public Religion::A Justification for using a Christian Sociological Approach for Studying the Social Scientific Aspects of Sport
The vast majority of social scientific studies of sport have been secular in nature and/or have tended to ignore the importance of studying the religious aspects of sport. In light of this, Shilling and Mellor (2014) have sought to encourage sociologists of sport not to divorce the ‘religious’ and the ‘sacred’ from their studies. In response to this call, the goal of the current essay is to explore how the conception of Christianity as ‘public religion’ can be utilised to help justify the use of a Christian sociological approach for studying the social scientific aspects of sport. After making a case for Christianity as public religion, we conclude that many of the sociological issues inherent in modern sport are an indirect result of its increasing secularisation and argue that this justifies the need for a Christian sociological approach. We encourage researchers to use the Bible, the tools of Christian theology and sociological concepts together, so to inform analyses of modern sport from a Christian perspective
Increasing capacity for the treatment of common musculoskeletal problems: A non-inferiority RCT and economic analysis of corticosteroid injection for shoulder pain comparing a physiotherapist and orthopaedic surgeon
Background Role substitution is a strategy employed to assist health services manage the growing demand for musculoskeletal care. Corticosteroid injection is a common treatment in this population but the efficacy of its prescription and delivery by physiotherapists has not been established against orthopaedic standards. This paper investigates whether corticosteroid injection given by a physiotherapist for shoulder pain is as clinically and cost effective as that from an orthopaedic surgeon. Methods A double blind non-inferiority randomized controlled trial was conducted in an Australian public hospital orthopaedic outpatient service, from January 2013 to June 2014. Adults with a General Practitioner referral to Orthopaedics for shoulder pain received subacromial corticosteroid and local anaesthetic injection prescribed and delivered independently by a physiotherapist or a consultant orthopaedic surgeon. The main outcome measure was total Shoulder Pain and Disability Index (SPADI) score at baseline, six and 12 weeks, applying a non-inferiority margin of 15 points. Secondary outcomes tested for superiority included pain, shoulder movement, perceived improvement, adverse events, satisfaction, quality of life and costs. Results 278 participants were independently assessed by the physiotherapist and the orthopaedic surgeon, with 64 randomised (physiotherapist 33, orthopaedic surgeon 31). There were no significant differences in baseline characteristics between groups. Non-inferiority of injection by the physiotherapist was declared from total SPADI scores at 6 and 12 weeks (upper limit of the 95% one-sided confidence interval 13.34 and 7.17 at 6 and 12 weeks, respectively). There were no statistically significant differences between groups on any outcome measures at 6 or 12 weeks. From the perspective of the health funder, the physiotherapist was less expensive. Conclusions Corticosteroid injection for shoulder pain, provided by a suitably qualified physiotherapist is at least as clinically effective, and less expensive, compared with similar care delivered by an orthopaedic surgeon. Policy makers and service providers should consider implementing this model of care
Discrepancies in endpoints between clinical trial protocols and clinical trial registration in randomized trials in oncology
Abstract Background Clinical trials are an essential part of evidence-based medicine. Hence, to ensure transparency and accountability in these clinical trials, policies for registration have been framed with emphasis on mandatory submission of trial elements, specifically outcome measures. As these efforts evolve further, we sought to evaluate the current status of endpoint reporting in clinical trial registries. Methods We reviewed 71 oncology related randomized controlled trials published in three high impact journals. We compared primary (PEP) and non-primary endpoints (NPEP) between the clinical trial protocols of these trials and their corresponding registration in one of the 14 primary global clinical trial registries. A discrepancy was defined as the non-reporting or absence of an endpoint in either the protocol or registry. The primary endpoint was the rate of discrepancy between secondary endpoints in clinical trial protocols and clinical trial registries. Results Of the 71 clinical trials, a discrepancy in PEP was found in only 4 trials (6%). Secondary endpoint (SEP) differences were found in 45 (63%) trials. Among these 45 trials, 36 (80%) had SEPs that were planned in the protocol but not reported in the registry and 19 (42%) had SEPs with endpoints in the registry that were not found in the protocol. The total number of SEPs that were absent from the corresponding registry and protocol were 84 and 29, respectively. Of these endpoints, 48 (57%) and 9 (31%) were included in the published report of these trials. Conclusion Although recent regulations and enhanced procedures have improved the number and quality of clinical trial registrations, inconsistencies regarding endpoint reporting still exist. Though further guidelines for the registration of clinical trials will help, greater efforts to provide a correct, easily accessible, and complete representation of planned endpoints are needed
- …