404 research outputs found
Differential evolution with two-level parameter adaptation
The performance of differential evolution (DE) largely depends on its mutation strategy and control parameters. In this paper, we propose an adaptive DE (ADE) algorithm with a new mutation strategy DE/lbest/1 and a two-level adaptive parameter control scheme. The DE/lbest/1 strategy is a variant of the greedy DE/best/1 strategy. However, the population is mutated under the guide of multiple locally best individuals in DE/lbest/1 instead of one globally best individual in DE/best/1. This strategy is beneficial to the balance between fast convergence and population diversity. The two-level adaptive parameter control scheme is implemented mainly in two steps. In the first step, the population-level parameters F p and CR p for the whole population are adaptively controlled according to the optimization states, namely, the exploration state and the exploitation state in each generation. These optimization states are estimated by measuring the population distribution. Then, the individual-level parameters F i and CR i for each individual are generated by adjusting the population-level parameters. The adjustment is based on considering the individual's fitness value and its distance from the globally best individual. This way, the parameters can be adapted to not only the overall state of the population but also the characteristics of different individuals. The performance of the proposed ADE is evaluated on a suite of benchmark functions. Experimental results show that ADE generally outperforms four state-of-the-art DE variants on different kinds of optimization problems. The effects of ADE components, parameter properties of ADE, search behavior of ADE, and parameter sensitivity of ADE are also studied. Finally, we investigate the capability of ADE for solving three real-world optimization problems
Loss of Abhd5 Promotes Colorectal Tumor Development and Progression by Inducing Aerobic Glycolysis and Epithelial-Mesenchymal Transition
How cancer cells shift metabolism to aerobic glycolysis is largely unknown. Here, we show that deficiency of a/b-hydrolase domain-containing 5 (Abhd5), an intracellular lipolytic activator that is also known as comparative gene identification 58 (CGI-58), promotes this metabolic shift and enhances malignancies of colorectal carcinomas (CRCs). Silencing of Abhd5 in normal fibroblasts induces malignant transformation. Intestine-specific knockout of Abhd5 in ApcMin/+ mice robustly increases tumorigenesis and malignant transformation of adenomatous polyps. In colon cancer cells, Abhd5 deficiency induces epithelial-mesenchymal transition by suppressing the AMPKa-p53 pathway, which is attributable to increased aerobic glycolysis. In human CRCs, Abhd5 expression falls substantially and correlates negatively with malignant features. Our findings link Abhd5 to CRC pathogenesis and suggest that cancer cells develop aerobic glycolysis by suppressin
Endoscopic thyroidectomy via areola approach for stage T1 papillary thyroid carcinoma: feasibility, safety, and oncologic outcomes
PurposeTo evaluate the feasibility, safety, and oncologic outcomes associated with endoscopic thyroidectomy via the areolar approach (ETAA), compared with conventional open thyroidectomy (COT) for the treatment of stage T1 papillary thyroid carcinoma (PTC).MethodsBetween January 2021 and June 2022, a total of 1204 patients diagnosed with PTC underwent screening, out of which 138 patients were selected for inclusion in the study population after propensity score matching (92 patients in the ETAA group and 46 patients in the COT group). The study included the collection and analysis of clinicopathologic characteristics, intraoperative outcomes, postoperative outcomes, complications, and follow-up data using R software.ResultsThe operative time for the ETAA group was longer than that for the COT group (160.42 ± 32.21 min vs. 121.93 ± 29.78 min, p < 0.0001). However, there were no significant differences between the two groups in terms of intraoperative blood loss, the extent of surgical resection, the number of dissected lymph nodes, the number of metastatic lymph nodes, and the rate of parathyroid autotransplantation. Postoperative drainage and C-reactive protein levels were higher in the ETAA group than in the COT group, but there were no significant differences in 24-hour visual analogue scale scores, white blood cell counts, drainage duration, or postoperative hospital stay. Complication rates were similar between the two groups, and no permanent recurrent laryngeal nerve palsy or hypoparathyroidism was observed. Patients who underwent ETAA reported greater cosmetic satisfaction and quality of life than those who underwent COT. During the follow-up phase, only one patient in the COT group developed lateral cervical lymph node involvement requiring reoperation.ConclusionETAA is a safe and feasible surgical method for patients with stage T1 PTC, providing results similar to COT in terms of oncologic completeness, while avoiding neck scars, with excellent cosmetic effects.Clinical trial registrationChinese Clinical Trial Registry center, identifier ChiCTR230007710
The fragmentomic property of plasma cell-free DNA enables the non-invasive detection of diabetic nephropathy in patients with diabetes mellitus
BackgroundDiabetic nephropathy (DN) is one of the most prevalent complications of diabetes mellitus (DM). However, there is still a lack of effective methods for non-invasive diagnosis of DN in clinical practice. We aimed to explore biomarkers from plasma cell-free DNA as a surrogate of renal biopsy for the differentiation of DN patients from patients with DM.Materials and methodsThe plasma cell-free DNA (cfDNA) was sequenced from 53 healthy individuals, 53 patients with DM but without DN, and 71 patients with both DM and DN. Multidimensional features of plasma DNA were analyzed to dissect the cfDNA profile in the DM and DN patients and identify DN-specific cfDNA features. Finally, a classification model was constructed by integrating all informative cfDNA features to demonstrate the clinical utility in DN detection.ResultsIn comparison with the DM patients, the DN individuals exhibited significantly increased cfDNA concentration in plasma. The cfDNA from the DN patients showed a distinct fragmentation pattern with an altered size profile and preferred motifs that start with “CC” in the cfDNA ending sites, which were associated with deoxyribonuclease 1 like 3 (DNASE1L3) expression in the kidney. Moreover, patients with DM or DN were found to carry more alterations in whole-genome cfDNA coverage when compared with healthy individuals. We integrated DN-specific cfDNA features (cfDNA concentration, size, and motif) into a classification model, which achieved an area under the receiver operating characteristic curve (AUC) of 0.928 for the differentiation of DN patients from DM patients.ConclusionOur findings showed plasma cfDNA as a reliable non-invasive biomarker for differentiating DN patients from DM patients. The utility of cfDNA in clinical practice in large prospective cohorts is warranted
Decoding the spermatogonial stem cell niche under physiological and recovery conditions in adult mice and humans
The intricate interaction between spermatogonial stem cell (SSC) and testicular niche is essential for maintaining SSC homeostasis; however, this interaction remains largely uncharacterized. In this study, to characterize the underlying signaling pathways and related paracrine factors, we delineated the intercellular interactions between SSC and niche cell in both adult mice and humans under physiological conditions and dissected the niche-derived regulation of SSC maintenance under recovery conditions, thus uncovering the essential role of C-C motif chemokine ligand 24 and insulin-like growth factor binding protein 7 in SSC maintenance. We also established the clinical relevance of specific paracrine factors in human fertility. Collectively, our work on decoding the adult SSC niche serves as a valuable reference for future studies on the aetiology, diagnosis, and treatment of male infertility.</p
Cheminformatics and artificial intelligence for accelerating agrochemical discovery
The global cost-benefit analysis of pesticide use during the last 30 years has been characterized by a significant increase during the period from 1990 to 2007 followed by a decline. This observation can be attributed to several factors including, but not limited to, pest resistance, lack of novelty with respect to modes of action or classes of chemistry, and regulatory action. Due to current and projected increases of the global population, it is evident that the demand for food, and consequently, the usage of pesticides to improve yields will increase. Addressing these challenges and needs while promoting new crop protection agents through an increasingly stringent regulatory landscape requires the development and integration of infrastructures for innovative, cost- and time-effective discovery and development of novel and sustainable molecules. Significant advances in artificial intelligence (AI) and cheminformatics over the last two decades have improved the decision-making power of research scientists in the discovery of bioactive molecules. AI- and cheminformatics-driven molecule discovery offers the opportunity of moving experiments from the greenhouse to a virtual environment where thousands to billions of molecules can be investigated at a rapid pace, providing unbiased hypothesis for lead generation, optimization, and effective suggestions for compound synthesis and testing. To date, this is illustrated to a far lesser extent in the publicly available agrochemical research literature compared to drug discovery. In this review, we provide an overview of the crop protection discovery pipeline and how traditional, cheminformatics, and AI technologies can help to address the needs and challenges of agrochemical discovery towards rapidly developing novel and more sustainable products
Pretreatment carcinoembryonic antigen level is a risk factor for para-aortic lymph node recurrence in addition to squamous cell carcinoma antigen following definitive concurrent chemoradiotherapy for squamous cell carcinoma of the uterine cervix
<p>Abstract</p> <p>Background</p> <p>To identify pretreatment carcinoembryonic antigen (CEA) levels as a risk factor for para-aortic lymph node (PALN) recurrence following concurrent chemoradiotherapy (CCRT) for cervical cancer.</p> <p>Methods</p> <p>From March 1995 to January 2008, 188 patients with squamous cell carcinoma (SCC) of the uterine cervix were analyzed retrospectively. No patient received PALN irradiation as the initial treatment. CEA and squamous cell carcinoma antigen (SCC-Ag) were measured before and after radiotherapy. PALN recurrence was detected by computer tomography (CT) scans. We analyzed the actuarial rates of PALN recurrence by using Kaplan-Meier curves. Multivariate analyses were carried out with Cox regression models. We stratified the risk groups based on the hazard ratios (HR).</p> <p>Results</p> <p>Both pretreatment CEA levels ≥ 10 ng/mL and SCC-Ag levels < 10 ng/mL (<it>p </it>< 0.001, HR = 8.838), SCC-Ag levels ≥ 40 ng/mL (<it>p </it>< 0.001, HR = 12.551), and SCC-Ag levels of 10-40 ng/mL (<it>p </it>< 0.001, HR = 4.2464) were significant factors for PALN recurrence. The corresponding 5-year PALN recurrence rates were 51.5%, 84.8%, and 27.5%, respectively. The 5-year PALN recurrence rate for patients with both low (< 10 ng/mL) SCC and CEA was only 9.6%. CEA levels ≥ 10 ng/mL or SCC-Ag levels ≥ 10 ng/mL at PALN recurrence were associated with overall survival after an isolated PALN recurrence. Pretreatment CEA levels ≥ 10 ng/mL were also associated with survival after an isolated PALN recurrence.</p> <p>Conclusions</p> <p>Pretreatment CEA ≥ 10 ng/mL is an additional risk factor of PALN relapse following definitive CCRT for SCC of the uterine cervix in patients with pretreatment SCC-Ag levels < 10 ng/mL. More comprehensive examinations before CCRT and intensive follow-up schedules are suggested for early detection and salvage in patients with SCC-Ag or CEA levels ≥ 10 ng/mL.</p
Health care systems in Sweden and China: Legal and formal organisational aspects
<p>Abstract</p> <p>Background</p> <p>Sharing knowledge and experience internationally can provide valuable information, and comparative research can make an important contribution to knowledge about health care and cost-effective use of resources. Descriptions of the organisation of health care in different countries can be found, but no studies have specifically compared the legal and formal organisational systems in Sweden and China.</p> <p>Aim</p> <p>To describe and compare health care in Sweden and China with regard to legislation, organisation, and finance.</p> <p>Methods</p> <p>Literature reviews were carried out in Sweden and China to identify literature published from 1985 to 2008 using the same keywords. References in recent studies were scrutinized, national legislation and regulations and government reports were searched, and textbooks were searched manually.</p> <p>Results</p> <p>The health care systems in Sweden and China show dissimilarities in legislation, organisation, and finance. In Sweden there is one national law concerning health care while in China the law includes the "Hygienic Common Law" and the "Fundamental Health Law" which is under development. There is a tendency towards market-orientated solutions in both countries. Sweden has a well-developed primary health care system while the primary health care system in China is still under development and relies predominantly on hospital-based care concentrated in cities.</p> <p>Conclusion</p> <p>Despite dissimilarities in health care systems, Sweden and China have similar basic assumptions, i.e. to combine managerial-organisational efficiency with the humanitarian-egalitarian goals of health care, and both strive to provide better care for all.</p
- …