56 research outputs found

    Protection From Influenza by Intramuscular Gene Vector Delivery of a Broadly Neutralizing Nanobody Does Not Depend on Antibody Dependent Cellular Cytotoxicity

    Get PDF
    Cross-subtype neutralizing single domain antibodies against influenza present new opportunities for immunoprophylaxis and pandemic preparedness. Their simple modular structure and single open reading frame format are highly amenable to gene therapy-mediated delivery. We have previously described R1a-B6, an alpaca-derived single domain antibody (nanobody), that is capable of potent cross-subtype neutralization in vitro of H1N1, H5N1, H2N2, and H9N2 influenza viruses, through binding to a highly conserved epitope in the influenza hemagglutinin stem region. To evaluate the potential of R1a-B6 for immunoprophylaxis, we have reformatted it as an Fc fusion for adeno-associated viral (AAV) vector delivery. Our findings demonstrate that a single intramuscular injection in mice of AAV encoding R1a-B6 fused to Fc fragments of different isotypes equipped either, with or without antibody dependent cellular cytotoxicity (ADCC) activity, was able to drive sustained high-level expression (0.5–1.1 mg/mL) in sera with no evidence of reduction for up to 6 months. R1a-B6-Fc fusions of both isotypes gave complete protection against lethal challenge with both pandemic A/California/07/2009 (H1N1)pdm09 and avian influenza A/Vietnam/1194/2004 (H5N1). This data suggests that R1a-B6 is capable of cross-subtype protection and ADCC was not essential for R1a-B6 efficacy. Our findings demonstrate AAV delivery of cross-subtype neutralizing nanobodies may be an effective strategy to prevent influenza infection and provide long-term protection independent of a host induced immune response

    Comparability of neuraminidase inhibition antibody titers measured by enzyme-linked lectin assay (ELLA) for the analysis of influenza vaccine immunogenicity

    Get PDF
    AbstractNeuraminidase-inhibition (NI) antibody titers can be used to evaluate the immunogenicity of inactivated influenza vaccines and have provided evidence of serologic cross-reactivity between seasonal and pandemic H1N1 viruses. The traditional thiobarbituric acid assay is impractical for large serologic analyses, and therefore many laboratories use an enzyme-linked lectin assay (ELLA) to determine serum NI antibody titers. The comparability of ELLA NI antibody titers when measured in different laboratories was unknown. Here we report a study conducted through the Consortium for the Standardisation of Influenza SeroEpidemiology (CONSISE) to evaluate the variability of the ELLA. NI antibody titers of a set of 12 samples were measured against both N1 and N2 neuraminidase antigens in 3 independent assays by each of 23 laboratories. For a sample repeated in the same assay, ≥96% of N1 and N2 assays had less than a 4-fold difference in titer. Comparison of the titers measured in assays conducted on 3 different days in the same laboratory showed that a four-fold difference in titer was uncommon. Titers of the same sera measured in different laboratories spanned 3 to 6 two-fold dilutions (i.e., 8–64 fold difference in titer), with an average percent geometric coefficient of variation (%GCV) of 112 and 82% against N1 and N2 antigens, respectively. The difference in titer as indicated by fold range and %GCV was improved by normalizing the NI titers to a standard that was included in each assay. This study identified background signal and the amount of antigen in the assay as critical factors that influence titer, providing important information toward development of a consensus ELLA protocol

    Cross-Protective Potential and Protection-Relevant Immune Mechanisms of Whole Inactivated Influenza Virus Vaccines Are Determined by Adjuvants and Route of Immunization

    Get PDF
    Adjuvanted whole inactivated virus (WIV) influenza vaccines show promise as broadly protective influenza vaccine candidates. Using WIV as basis we assessed the relative efficacy of different adjuvants by carrying out a head-to-head comparison of the liposome-based adjuvants CAF01 and CAF09 and the protein-based adjuvants CTA1-DD and CTA1-3M2e-DD and evaluated whether one or more of the adjuvants could induce broadly protective immunity. Mice were immunized with WIV prepared from A/Puerto Rico/8/34 (H1N1) virus intramuscularly with or without CAF01 or intranasally with or without CAF09, CTA1-DD, or CTA1-3M2e-DD, followed by challenge with homologous, heterologous or heterosubtypic virus. In general, intranasal immunizations were significantly more effective than intramuscular immunizations in inducing virus-specific serum-IgG, mucosal-IgA, and splenic IFNÎł-producing CD4 T cells. Intranasal immunizations with adjuvanted vaccines afforded strong cross-protection with milder clinical symptoms and better control of virus load in lungs. Mechanistic studies indicated that non-neutralizing IgG antibodies and CD4 T cells were responsible for the improved cross-protection while IgA antibodies were dispensable. The role of CD4 T cells was particularly pronounced for CTA1-3M2e-DD adjuvanted vaccine as evidenced by CD4 T cell-dependent reduction of lung virus titers and clinical symptoms. Thus, intranasally administered WIV in combination with effective mucosal adjuvants appears to be a promising broadly protective influenza vaccine candidate.Peer Reviewe

    Report on eighth WHO meeting on development of influenza vaccines that induce broadly protective and long-lasting immune responses: Chicago, USA, 23-24 August 2016

    Get PDF
    In August 2016, the World Health Organization (WHO) convened the "Eighth meeting on development of influenza vaccines that induce broadly protective and long-lasting immune responses" to discuss the regulatory requirements and pathway

    Haemagglutination inhibition and virus microneutralisation serology assays: use of harmonised protocols and biological standards in seasonal influenza serology testing and their impact on inter-laboratory variation and assay correlation: A FLUCOP collaborative study

    Get PDF
    Introduction: The haemagglutination inhibition assay (HAI) and the virus microneutralisation assay (MN) are long-established methods for quantifying antibodies against influenza viruses. Despite their widespread use, both assays require standardisation to improve inter-laboratory agreement in testing. The FLUCOP consortium aims to develop a toolbox of standardised serology assays for seasonal influenza. Building upon previous collaborative studies to harmonise the HAI, in this study the FLUCOP consortium carried out a head-to-head comparison of harmonised HAI and MN protocols to better understand the relationship between HAI and MN titres, and the impact of assay harmonisation and standardisation on inter-laboratory variability and agreement between these methods. Methods: In this paper, we present two large international collaborative studies testing harmonised HAI and MN protocols across 10 participating laboratories. In the first, we expanded on previously published work, carrying out HAI testing using egg and cell isolated and propagated wild-type (WT) viruses in addition to high-growth reassortants typically used influenza vaccines strains using HAI. In the second we tested two MN protocols: an overnight ELISA-based format and a 3-5 day format, using reassortant viruses and a WT H3N2 cell isolated virus. As serum panels tested in both studies included many overlapping samples, we were able to look at the correlation of HAI and MN titres across different methods and for different influenza subtypes. Results: We showed that the overnight ELISA and 3-5 day MN formats are not comparable, with titre ratios varying across the dynamic range of the assay. However, the ELISA MN and HAI are comparable, and a conversion factor could possibly be calculated. In both studies, the impact of normalising using a study standard was investigated, and we showed that for almost every strain and assay format tested, normalisation significantly reduced inter-laboratory variation, supporting the continued development of antibody standards for seasonal influenza viruses. Normalisation had no impact on the correlation between overnight ELISA and 3-5 day MN formats.publishedVersio

    An external quality assessment feasibility study; cross laboratory comparison of haemagglutination inhibition assay and microneutralization assay performance for seasonal influenza serology testing: A FLUCOP study

    Get PDF
    Introduction: External Quality Assessment (EQA) schemes are designed to provide a snapshot of laboratory proficiency, identifying issues and providing feedback to improve laboratory performance and inter-laboratory agreement in testing. Currently there are no international EQA schemes for seasonal influenza serology testing. Here we present a feasibility study for conducting an EQA scheme for influenza serology methods. Methods: We invited participant laboratories from industry, contract research organizations (CROs), academia and public health institutions who regularly conduct hemagglutination inhibition (HAI) and microneutralization (MN) assays and have an interest in serology standardization. In total 16 laboratories returned data including 19 data sets for HAI assays and 9 data sets for MN assays. Results: Within run analysis demonstrated good laboratory performance for HAI, with intrinsically higher levels of intra-assay variation for MN assays. Between run analysis showed laboratory and strain specific issues, particularly with B strains for HAI, whilst MN testing was consistently good across labs and strains. Inter-laboratory variability was higher for MN assays than HAI, however both assays showed a significant reduction in inter-laboratory variation when a human sera pool is used as a standard for normalization. Discussion: This study has received positive feedback from participants, highlighting the benefit such an EQA scheme would have on improving laboratory performance, reducing inter laboratory variation and raising awareness of both harmonized protocol use and the benefit of biological standards for seasonal influenza serology testing.publishedVersio

    Vaccine-induced neutralizing antibody responses to seasonal influenza virus H1N1 strains are not enhanced during subsequent pandemic H1N1 infection

    Get PDF
    The first exposure to influenza is presumed to shape the B-cell antibody repertoire, leading to preferential enhancement of the initially formed responses during subsequent exposure to viral variants. Here, we investigated whether this principle remains applicable when there are large genetic and antigenic differences between primary and secondary influenza virus antigens. Because humans usually have a complex history of influenza virus exposure, we conducted this investigation in influenza-naive cynomolgus macaques. Two groups of six macaques were immunized four times with influenza virus-like particles (VLPs) displaying either one (monovalent) or five (pentavalent) different hemagglutinin (HA) antigens derived from seasonal H1N1 (H1N1) strains. Four weeks after the final immunization, animals were challenged with pandemic H1N1 (H1N1pdm09). Although immunization resulted in robust virus-neutralizing responses to all VLP-based vaccine strains, there were no cross-neutralization responses to H1N1pdm09, and all animals became infected. No reductions in viral load in the nose or throat were detected in either vaccine group. After infection, strong virus-neutralizing responses to H1N1pdm09 were induced. However, there were no increases in virus-neutralizing titers against four of the five H1N1 vaccine strains; and only a mild increase was observed in virus-neutralizing titer against the influenza A/Texas/36/91 vaccine strain. After H1N1pdm09 infection, both vaccine groups showed higher virus-neutralizing titers against two H1N1 strains of intermediate antigenic distance between the H1N1 vaccine strains and H1N1pdm09, compared with the naive control group. Furthermore, both vaccine groups had higher HA-stem antibodies early after infection than the control group. In conclusion, immunization with VLPs displaying HA from antigenically distinct H1N1 variants increased the breadth of the immune response during subsequent H1N1pdm09 challenge, although this phenomenon was limited to intermediate antigenic variants

    Development and Assessment of a Pooled Serum as Candidate Standard to Measure Influenza A Virus Group 1 Hemagglutinin Stalk-Reactive Antibodies

    Get PDF
    The stalk domain of the hemagglutinin has been identified as a target for induction of protective antibody responses due to its high degree of conservation among numerous influenza subtypes and strains. However, current assays to measure stalk-based immunity are not standardized. Hence, harmonization of assay readouts would help to compare experiments conducted in different laboratories and increase confidence in results. Here, serum samples from healthy individuals (n = 110) were screened using a chimeric cH6/1 hemagglutinin enzyme-linked immunosorbent assay (ELISA) that measures stalk-reactive antibodies. We identified samples with moderate to high IgG anti-stalk antibody levels. Likewise, screening of the samples using the mini-hemagglutinin (HA) headless construct #4900 and analysis of the correlation between the two assays confirmed the presence and specificity of anti-stalk antibodies. Additionally, samples were characterized by a cH6/1N5 virus-based neutralization assay, an antibody-dependent cell-mediated cytotoxicity (ADCC) assay, and competition ELISAs, using the stalk-reactive monoclonal antibodies KB2 (mouse) and CR9114 (human). A “pooled serum” (PS) consisting of a mixture of selected serum samples was generated. The PS exhibited high levels of stalk-reactive antibodies, had a cH6/1N5-based neutralization titer of 320, and contained high levels of stalk-specific antibodies with ADCC activity. The PS, along with blinded samples of varying anti-stalk antibody titers, was distributed to multiple collaborators worldwide in a pilot collaborative study. The samples were subjected to different assays available in the different laboratories, to measure either binding or functional properties of the stalk-reactive antibodies contained in the serum. Results from binding and neutralization assays were analyzed to determine whether use of the PS as a standard could lead to better agreement between laboratories. The work presented here points the way towards the development of a serum standard for antibodies to the HA stalk domain of phylogenetic group 1

    International laboratory comparison of influenza microneutralization assays for A(H1N1)pdm09, A(H3N2), and A(H5N1) influenza viruses by CONSISE

    Get PDF
    The microneutralization assay is commonly used to detect antibodies to influenza virus, and multiple protocols are used worldwide. These protocols differ in the incubation time of the assay as well as in the order of specific steps, and even within protocols there are often further adjustments in individual laboratories. The impact these protocol variations have on influenza serology data is unclear. Thus, a laboratory comparison of the 2-day enzyme-linked immunosorbent assay (ELISA) and 3-day hemagglutination (HA) microneutralization (MN) protocols, using A(H1N1)pdm09, A(H3N2), and A(H5N1) viruses, was performed by the CONSISE Laboratory Working Group. Individual laboratories performed both assay protocols, on multiple occasions, using different serum panels. Thirteen laboratories from around the world participated. Within each laboratory, serum sample titers for the different assay protocols were compared between assays to determine the sensitivity of each assay and were compared between replicates to assess the reproducibility of each protocol for each laboratory. There was good correlation of the results obtained using the two assay protocols in most laboratories, indicating that these assays may be interchangeable for detecting antibodies to the influenza A viruses included in this study. Importantly, participating laboratories have aligned their methodologies to the CONSISE consensus 2-day ELISA and 3-day HAMNassay protocols to enable better correlation of these assays in the future
    • …
    corecore