18 research outputs found

    NASA wind shear flight test in situ results

    Get PDF
    The main objectives in developing the NASA in situ windshear detection algorithm were to provide a measurement standard for validation of forward-look sensors under development, and to demonstrate the algorithm's ability to operate with a suitably low nuisance alert rate. It was necessary to know exactly how the algorithm was implemented and what parameters and filtering were used, in order to be able to fully test its effectiveness and correlate in situ results with forward-look sensor data

    A simple, analytic 3-dimensional downburst model based on boundary layer stagnation flow

    Get PDF
    A simple downburst model is developed for use in batch and real-time piloted simulation studies of guidance strategies for terminal area transport aircraft operations in wind shear conditions. The model represents an axisymmetric stagnation point flow, based on velocity profiles from the Terminal Area Simulation System (TASS) model developed by Proctor and satisfies the mass continuity equation in cylindrical coordinates. Altitude dependence, including boundary layer effects near the ground, closely matches real-world measurements, as do the increase, peak, and decay of outflow and downflow with increasing distance from the downburst center. Equations for horizontal and vertical winds were derived, and found to be infinitely differentiable, with no singular points existent in the flow field. In addition, a simple relationship exists among the ratio of maximum horizontal to vertical velocities, the downdraft radius, depth of outflow, and altitude of maximum outflow. In use, a microburst can be modeled by specifying four characteristic parameters, velocity components in the x, y and z directions, and the corresponding nine partial derivatives are obtained easily from the velocity equations

    Crew Procedures for Continuous Descent Arrivals Using Conventional Guidance

    Get PDF
    This paper presents results from a simulation study which investigated the use of Continuous Descent Arrival (CDA) procedures for conducting a descent through a busy terminal area, using conventional transport-category automation. This research was part of the Low Noise Flight Procedures (LNFP) element within the Quiet Aircraft Technology (QAT) Project, that addressed development of flight guidance, and supporting pilot and Air Traffic Control (ATC) procedures for low noise operations. The procedures and chart were designed to be easy to understand, and to make it easy for the crew to make changes via the Flight Management Computer Control-Display Unit (FMC-CDU) to accommodate changes from ATC. The test runs were intended to represent situations typical of what exists in many of today's terminal areas, including interruptions to the descent in the form of clearances issued by ATC

    Throughput Benefit Assessment for Tactical Runway Configuration Management (TRCM)

    Get PDF
    The System-Oriented Runway Management (SORM) concept is a collection of needed capabilities focused on a more efficient use of runways while considering all of the factors that affect runway use. Tactical Runway Configuration Management (TRCM), one of the SORM capabilities, provides runway configuration and runway usage recommendations, monitoring the active runway configuration for suitability given existing factors, based on a 90 minute planning horizon. This study evaluates the throughput benefits using a representative sample of today's traffic volumes at three airports: Memphis International Airport (MEM), Dallas-Fort Worth International Airport (DFW), and John F. Kennedy International Airport (JFK). Based on this initial assessment, there are statistical throughput benefits for both arrivals and departures at MEM with an average of 4% for arrivals, and 6% for departures. For DFW, there is a statistical benefit for arrivals with an average of 3%. Although there is an average of 1% benefit observed for departures, it is not statistically significant. For JFK, there is a 12% benefit for arrivals, but a 2% penalty for departures. The results obtained are for current traffic volumes and should show greater benefit for increased future demand. This paper also proposes some potential TRCM algorithm improvements for future research. A continued research plan is being worked to implement these improvements and to re-assess the throughput benefit for today and future projected traffic volumes

    Evaluation of a Tool for Airborne-Managed In-Trail Approach Spacing

    Get PDF
    The Advanced Terminal Area Approach Spacing (ATAAS) tool uses Automatic Dependent Surveillance-Broadcast aircraft state data to compute a speed command for an ATAAS-equipped aircraft to follow and obtain a required time interval behind another aircraft. The ATAAS tool and candidate operational procedures were tested in a high-fidelity, full mission simulator with active airline subject pilots flying an arrival scenario to obtain pilot perceptions of acceptability and workload for the concept. The aircraft consistently achieved the target spacing interval within 1 s when the ATAAS speed guidance was autothrottle-coupled and a slightly greater (4 - 5 s) but consistent interval with pilot-controlled speed changes. The subject pilots rated the ATAAS workload as similar to one with standard procedures for a nominal Instrument Landing System (ILS) approach. They also rated highly various procedural aspects (including amount of head-down time required). Eyetracker data showed only slight changes in instrument scan patterns for ATAAS versus standard ILS procedures

    Airborne Evaluation and Demonstration of a Time-Based Airborne Inter-Arrival Spacing Tool

    Get PDF
    An airborne tool has been developed that allows an aircraft to obtain a precise inter-arrival time-based spacing interval from the preceding aircraft. The Advanced Terminal Area Approach Spacing (ATAAS) tool uses Automatic Dependent Surveillance-Broadcast (ADS-B) data to compute speed commands for the ATAAS-equipped aircraft to obtain this inter-arrival spacing behind another aircraft. The tool was evaluated in an operational environment at the Chicago O'Hare International Airport and in the surrounding terminal area with three participating aircraft flying fixed route area navigation (RNAV) paths and vector scenarios. Both manual and autothrottle speed management were included in the scenarios to demonstrate the ability to use ATAAS with either method of speed management. The results on the overall delivery precision of the tool, based on a target spacing of 90 seconds, were a mean of 90.8 seconds with a standard deviation of 7.7 seconds. The results for the RNAV and vector cases were, respectively, M=89.3, SD=4.9 and M=91.7, SD=9.0

    Benefit Assessment for Metroplex Tactical Runway Configuration Management (mTRCM) in a Simulated Environment

    Get PDF
    The System-Oriented Runway Management (SORM) concept is a collection of capabilities focused on a more efficient use of runways while considering all of the factors that affect runway use. Tactical Runway Configuration Management (TRCM), one of the SORM capabilities, provides runway configuration and runway usage recommendations, and monitoring the active runway configuration for suitability given existing factors. This report focuses on the metroplex environment, with two or more proximate airports having arrival and departure operations that are highly interdependent. The myriad of factors that affect metroplex opeations require consideration in arriving at runway configurations that collectively best serve the system as a whole. To assess the metroplex TRCM (mTRCM) benefit, the performance metrics must be compared with the actual historical operations. The historical configuration schedules can be viewed as the schedules produced by subject matter experts (SMEs), and therefore are referred to as the SMEs' schedules. These schedules were obtained from the FAA's Aviation System Performance Metrics (ASPM) database; this is the most representative information regarding runway configuration selection by SMEs. This report focused on a benefit assessment of total delay, transit time, and throughput efficiency (TE) benefits using the mTRCM algorithm at representative volumes for today's traffic at the New York metroplex (N90)

    Wake Encounter Analysis for a Closely Spaced Parallel Runway Paired Approach Simulation

    Get PDF
    A Monte Carlo simulation of simultaneous approaches performed by two transport category aircraft from the final approach fix to a pair of closely spaced parallel runways was conducted to explore the aft boundary of the safe zone in which separation assurance and wake avoidance are provided. The simulation included variations in runway centerline separation, initial longitudinal spacing of the aircraft, crosswind speed, and aircraft speed during the approach. The data from the simulation showed that the majority of the wake encounters occurred near or over the runway and the aft boundaries of the safe zones were identified for all simulation conditions

    Urban Air Mobility Airspace Integration Concepts and Considerations

    Get PDF
    Urban Air Mobility (UAM) - defined as safe and efficient air traffic operations in a metropolitan area for manned aircraft and unmanned aircraft systems - is being researched and developed by industry, academia, and government. Significant resources have been invested toward cultivating an ecosystem for Urban Air Mobility that includes manufacturers of electric vertical takeoff and landing aircraft, builders of takeoff and landing areas, and researchers of the airspace integration concepts, technologies, and procedures needed to conduct Urban Air Mobility operations safely and efficiently alongside other airspace users. This paper provides high-level descriptions of both emergent and early expanded operational concepts for Urban Air Mobility that NASA is developing. The scope of this work is defined in terms of missions, aircraft, airspace, and hazards. Past and current Urban Air Mobility operations are also reviewed, and the considerations for the data exchange architecture and communication, navigation, and surveillance requirements are also discussed. This paper will serve as a starting point to develop a framework for NASA's Urban Air Mobility airspace integration research and development efforts with partners and stakeholders that could include fast-time simulations, human-in-the-loop (HITL) simulations, and flight demonstrations

    Evaluation of Trajectory Errors in an Automated Terminal-Area Environment

    No full text
    A piloted simulation experiment was conducted to document the trajectory errors associated with use of an airplane's Flight Management System (FMS) in conjunction with a ground-based ATC automation system, Center-TRACON Automation System (CTAS) in the terminal area. Three different arrival procedures were compared: current-day (vectors from ATC), modified (current-day with minor updates), and data link with FMS lateral navigation. Six active airline pilots flew simulated arrivals in a fixed-base simulator. The FMS-datalink procedure resulted in the smallest time and path distance errors, indicating that use of this procedure could reduce the CTAS arrival-time prediction error by about half over the current-day procedure. Significant sources of error contributing to the arrival-time error were crosstrack errors and early speed reduction in the last 2-4 miles before the final approach fix. Pilot comments were all very positive, indicating the FMS-datalink procedure was easy to understand and use, and the increased head-down time and workload did not detract from the benefit. Issues that need to be resolved before this method of operation would be ready for commercial use include development of procedures acceptable to controllers, better speed conformance monitoring, and FMS database procedures to support the approach transitions
    corecore