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Abstract 

This paper presents results from a simulation study which 
investigated the use of Continuous Descent Arrival (CDA) procedures 
for conducting a descent through a busy terminal area, using 
conventional transport-category automation. This research was part of 
the Low Noise Flight Procedures (LNFP) element within the Quiet 
Aircraft Technology (QAT) Project, that addressed development of flight 
guidance, and supporting pilot and Air Traffic Control (ATC) procedures 
for low noise operations. The procedures and chart were designed to be 
easy to understand, and to make it easy for the crew to make changes via 
the Flight Management Computer Control-Display Unit (FMC-CDU) to 
accommodate changes from ATC. The test runs were intended to 
represent situations typical of what exists in many of today’s terminal 
areas, including interruptions to the descent in the form of clearances 
issued by ATC. 

The results showed that the pilots were able to conduct the descents, 
even when interrupted by ATC with instructions that took the aircraft off 
of the programmed path, laterally, vertically or both. The uninterrupted 
descent resulted in the most optimal profile, which translated to the 
lowest perceived noise levels and lowest amount of fuel burned. These 
benefits were reduced as the interruptions from ATC increased, but all 
three CDA run types resulted in quieter and more fuel efficient runs than 
with current-day procedures. The workload associated with conducting 
the descents were rated comparable to workload with current-day 
procedures (non-CDA). Pilots were able to conduct the descents with a 
minimum amount of time allowed for studying the instructions and charts 
they were given. 

Introduction 

The noise generated by aircraft during departure and arrival flight operations continues to be a 
significant problem at most major airports in the United States.  Complaints from the communities 
surrounding these airports often result in restrictions to the number and type of operations that can be 
conducted in the surrounding areas.  They also result in significant delays to construction of new runways 
and extension of existing runways.  These restrictions in turn limit the capacity of the airport and can 
result in economic hardship for the airport, airlines, and communities served by the airport. 

Improvements to the design of jet engines over the past several decades have reduced jet engine noise 
and greatly reduced the noise footprint of individual aircraft.  However, the increasing number of flights 
and the expansion of population in the vicinity of airports have prompted renewed interest in methods for 
noise abatement.  Procedural solutions to the noise problem, which involve changing the way pilots 
operate their aircraft to minimize the perceived noise on the ground below, have been investigated for a 
number of years, and several promising techniques have been developed.  The primary advantage of 
procedural solutions is that benefits can be achieved without making design changes to the aircraft 
engines or airframe.  The major challenges involved with the use of operational noise abatement 
procedures include development of acceptable pilot procedures, development of flight guidance 
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techniques, and development of acceptable procedures for Air Traffic Control (ATC). 

This paper presents results from a study that was conducted as part of NASA’s Quiet Aircraft 
Technology (QAT) Project.  The primary goal of the QAT project is to identify technology which can be 
applied to aircraft and to flight operations that will reduce the community noise generated by aircraft.  
The objective is to reduce noise by 10 dB, with flight operations contributing 2 dB to the total noise 
reduction. The element within the QAT Project that addresses the operational issues is called Low Noise 
Flight Procedures (LNFP), and includes the development of low noise flight guidance, and supporting 
pilot and ATC procedures for low noise operations. The study described in this paper involved the 
development and testing of operational procedures for conducting low noise arrivals using conventional 
aircraft 

Background 

Continuous Descent Arrival Procedures 

The Continuous Descent Arrival (CDA) has been identified as a beneficial method for operationally 
reducing community noise near airports.  As the name implies, a CDA optimally consists of an 
uninterrupted descent through the terminal area for an arriving aircraft, without any level altitude 
segments. The CDA is designed to minimize level flight at low altitudes, which produces more noise than 
descending segments, due to the higher thrust setting required to maintain level flight. Also, the CDA 
design keeps the aircraft higher throughout most of the descent through the terminal area, which allows 
for increased noise attenuation (see Figure 1). 

 

 

 

 

 

 

 

 

 

 

Figure 1. Illustration of vertical profiles for a CDA and current-day approach profile. 

 

Considerable research and operational testing of CDA procedures has been conducted, such as in the 
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studies referenced in 1 and 2.  Several airports, such as Heathrow in London and Schiphol in Amsterdam 
have operational CDA procedures that are used mainly during night-time low traffic density operations.  
However, there are two major obstacles that limit the ability to use CDAs on a regular basis, especially 
during high traffic-density periods. One is the lack of custom-designed flight guidance, which is needed 
by pilots to optimally fly the near-idle thrust continuous descent.  The other obstacle is the lack of CDA 
operational procedures that can be integrated with current ATC procedures. This is particularly important 
during high traffic density operations, when controllers rely on the ability to issue speed and routing 
changes for maintaining aircraft separation and spacing.  The primary objective of this study addresses the 
second issue, the develop of procedures that can be used to conduct CDA descents with existing aircraft 
autoflight modes, with ATC procedures similar to those used in current-day terminal areas. The following 
two sections expand on the issues of Flight Management Systems and Air Traffic Control, as they relate 
to the CDA Procedures for this research study. 

Flight Management Systems and CDA Procedures 

Since the early 1980s, standard avionics on commercial transport aircraft have included systems for 
managing various aspects of the flight trajectory. A modern Flight Management System (FMS) allows 
pilots to plan the trajectory for an entire flight, and include Vertical Navigation (VNAV) functions that 
can compute a performance-based vertical trajectory for the aircraft.  The VNAV function also provides 
flight guidance to follow the computed trajectory, and thus could potentially be used to follow a CDA 
trajectory.  Reference 2 includes a report on a study where CDA procedures were demonstrated, using 
commercial FMS VNAV functions to conduct the descent.  However, limitations in both the basic 
functionality of VNAV as well as in pilot understanding of the VNAV guidance functionality have 
prevented widespread adoption of VNAV-based CDA procedures for operational use.  The three main 
limitations associated with use of existing VNAV for CDA procedures are: 

• The lack of a standard pre-defined lateral path that is continuous to the runway, and can be used 
as the basis for a CDA trajectory. 

• The lack of flexibility in operation of the VNAV function, that does not allow pilots to easily 
make speed changes during the descent, while maintaining the CDA trajectory. 

• The lack of continuously updated aircraft energy information to allow pilots to manage the 
descent more noise-efficiently, and to determine whether the high-energy CDA trajectory can be 
successfully flown. 

These VNAV limitations could make it difficult, if not impossible, for aircraft to conduct CDAs in 
busy terminal areas, where controllers typically rely on tactical procedures to space traffic. The first two 
items above can be addressed by the design of flexible CDA procedures, such as those developed for this 
study. The third item was not addressed in this study, which focused on the use of conventional guidance 
systems.  

Traffic Control and CDA Procedures 

CDA procedures using VNAV can be readily implemented in the terminal area for single aircraft 
operations.  However, multiple aircraft following CDA procedures for landing at the same or parallel 
runways, present a significant challenge for ATC.  Typically, terminal area air traffic controllers 
(approach controllers) will utilize vectoring techniques in order to sequence arriving aircraft for landing, 
and to provide adequate lateral and vertical separation between aircraft.  This requires controllers to make 
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tactical changes to the aircraft heading and airspeed, in addition to using staggered altitude profiles, to 
facilitate a safe and orderly flow of traffic to the runways.  The fixed lateral routing needed for CDA 
descents is seldom, if ever, used for busy terminal areas.  On arrival segments that have defined lateral 
routing, controllers typically use speed control to achieve and maintain desired spacing intervals between 
aircraft. Aircraft flying continuous descent arrival procedures have higher energy than those flying 
current-day procedures, mostly because of their higher altitude throughout the arrival.  It may not be 
possible for an aircraft to dissipate this higher energy if its flying distance is shortened, thus making it 
difficult to comply with vectors that shorten the aircraft’s flight path. 

To effectively utilize FMS-based CDA procedures while also maintaining separation in a high traffic 
density terminal area, controllers must be able to specify changes in the lateral path, airspeed, and altitude 
of all aircraft. To be usable, CDA procedures must be flexible enough to accommodate these tactical 
clearances. Procedures developed for this experiment were developed to take these considerations into 
account. 

Related studies 

Although the experiment documented in this report does not make use of advanced technologies for 
conducting CDAs, it is useful to recall a previous study, which examined the use of energy-based 
guidance to maintain the ideal CDA profile. This study provided researchers with an initial look at the 
benefit of and pilot acceptability issues associated with an energy-based guidance, called Low Noise 
Guidance (LNG), for conducting CDAs. The relevance to the current study is in the operational 
procedures used for the CDA.  

The study, documented in reference [3], paired individual subject pilots (acting as the flying pilot) 
with a researcher (acting as the non-flying pilot). Because this pairing did not truly represent an airline 
crew, a full set of crew procedures were not developed or evaluated. However, a charted procedure was 
developed and used, and the pilots were given a set of crew procedures that described how the LNG 
algorithm could be used to conduct the CDA descent. 

The LNG algorithm was designed and tested as a VNAV sub-mode, in a simulated subsonic jet 
transport aircraft with advanced all-electronic displays. The subject pilots in this experiment were able to 
use the LNG low noise guidance to effectively conduct low-noise arrivals, with no major problems 
conducting the descent profiles as outlined in the procedures they were given. This included the test runs 
where they were required to make route and speed changes.  Compared to the Baseline runs noise under 
the flight path was reduced by at least 2 decibels SEL at distances from 3 nmi out to 17.5 nmi from the 
runway, with peak reductions of 8.5 decibels at about 10.5 nmi.  Fuel consumption was also reduced by 
about 17% for the LNG conditions compared to Baseline runs for the same flight distance.   

More significantly for the current experiment, a Standard CDA procedure, in which the pilots used 
charted altitude crossing conditions with extended glideslope on final approach (a CDA using 
conventional guidance), also proved effective in reducing noise and fuel consumption.  Without the 
benefit of continuous VNAV guidance, however, the pilots were not able to consistently achieve 
continuous descents.  The level-altitude segments prior to glideslope intercept resulted in additional 
required thrust, and subsequently reduced the potential noise benefit.  Peak noise reductions of 6.5 
decibels and fuel savings of about 8% were achieved with the Standard CDA procedure compared to the 
Baseline runs. 

Although the CDA profile cannot be maintained exactly using only conventional VNAV, the profile 



 

5 

can be approximated, and could still provide a significant noise advantage over current-day procedures. In 
recent years there has been much interest in the development of flexible CDA procedures that could be 
used in terminal areas with moderately heavy traffic levels. The degree to which a CDA profile can be 
maintained is dependent partially on how well the charted procedures are designed, and partially on how 
much ATC lets the aircraft stay on the profile. The charted and crew procedures used for this experiment 
were developed with these factors in mind. Planned future experiments in LNFP will explore the 
extension of these crew procedures to CDAs done with LNG guidance.  

Crew Procedures Experiment 

Experiment Objectives and Approach 

This experiment had three main objectives: 1) evaluate the effectiveness of the CDA procedures using 
conventional VNAV; 2) identify any potential sources of confusion in the proposed procedure; and 3) 
conduct an informal assessment of the CDA descent when done with a new energy guidance algorithm. 

The first objective, evaluation of the effectiveness of the CDA procedures, required both objective and 
subjective data, to determine whether or not the pilots could conduct a descent using the CDA procedures, 
with acceptable levels of perceived workload. 

The second objective, identification of potential sources of confusion, is important to the development 
of a clear and concise CDA procedure, since the CDA differs from current-day procedures in subtle but 
important aspects. The primary source of data for determining this was from pilot comments and 
observations of how the crews conducted the descent. 

The third objective, assessment of the CDA descent done with energy guidance, was considered an 
informal assessment, because the energy guidance was not yet fully integrated with the FMS. Because the 
balanced test matrix did not include the LNG runs, it was not appropriate to conduct statistical analyses 
on the data from these runs. Pilot comments and profiles of altitude and speed were documented, but a 
more thorough evaluation and direct comparison with non-energy-based guidance was left for the next 
experiment. 

To achieve these experiment objectives, a series of four simulator test runs was developed, based on a 
scenario that consisted of a descent and approach into a moderately busy terminal area, Louisville 
International Airport (SDF). Each of the test runs used for this study had slight variations that represented 
situations typical of what an aircraft might encounter in that environment. The subject pilots that were 
recruited to fly the series of test runs were given instructions and information on how to conduct the CDA 
descent. Following practice time in the simulator, the pilots completed the test runs, during which 
objective and subjective data were recorded.  

Flight simulator 

The facility used for this experiment was the NASA Langley Research Center Integration Flight Deck 
(IFD) simulator (Figure 2). The IFD simulator cab is an engineering cab designed to represent the 
conventional flight deck of the NASA ARIES (Airborne Research Integrated Experiments System) B-757 
airplane.  The cab is populated with flight instrumentation, including the overhead subsystems panels, to 
replicate the B-757.  The cockpit contains a “Panorama” visual out-the-window display system.  This 
system provides a 200 degree by 40 degree visual out-the-window display to add realism to piloted 
experiments.   
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Figure 2. NASA LaRC Integration Flight Deck Simulator 

During these simulation tests, significant cockpit modifications included a non-standard control panel 
for the Navigation Display (ND), and minor format modifications to the EADI.  The non-standard ND 
control panel was located on the aisle stand just aft of the throttles.   

Charts 

Charts and procedures were given to the crews upon arrival on the day of their participation. The 
charted arrival used for this study was called the Bluegrass RNAV Arrival (Figure 3), and was based on 
the existing CHERI Two Standard Terminal Arrival (STAR) into Louisville. The CHERI Two Arrival 
brings aircraft arriving from the west on a direct course to the IIU VOR, which is a radio navigational aid 
located southeast of the airport. Well before this point (usually several miles), aircraft landing to the south 
are vectored north towards the airport, onto a right downwind or base leg. 

ATC Environment 

A PC-based Air Traffic Control simulation was used to help provide realism to the subject pilots’ 
experience in the simulator. The simulation program used was called the Air Data Radar Simulation 
(ADRS), a program developed in-house at NASA Ames Research Center for internal NASA use. An air 
traffic controller operating the ADRS watched the ground tracks of all the simulated air traffic (including 
the subject crew’s aircraft) on a PC display. All other air traffic (excepting the subject crew’s aircraft) 
were pre-recorded and played back during the runs.  

Communications between the other aircraft and the controller were scripted and recorded on a desktop 
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computer as audio files that could be played back at the appropriate times by the controller. The controller 
also had scripts for the communications with the subject pilots, but had some flexibility for real-time 
requests or questions from the pilots. The subject pilots were able to hear all the pre-recorded 
communications, but talked directly with the controller, enabling him to issue clearances and vectors to 
them in real-time and adjust as needed for each particular situation. Position data for the other aircraft 
were also transmitted to the simulator, so the subject pilots could see them as traffic targets on their ND.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Bluegrass RNAV Arrival used for this experiment. 

Test Runs 

Four different test runs (conditions) were developed for this experiment: a baseline test run for 
comparison purposes, and three CDA test runs. The baseline test run consisted of current-day type 
procedures, including vectors and speeds from ATC. The three CDA test runs each had different levels of 
complexity, as determined by the amount of intervention required by the pilots. Examples of lateral paths 
for all test runs are shown in Figure 4, and of vertical trajectories in Figure 5. The four test runs are 
described in more detail below, and are referred to with the following shorthand notation: a) Baseline for 
the current-day vectoring procedures run; b) CDA1 for the least complicated (uninterrupted) CDA run; c) 
CDA2 for the medium-level complexity CDA; and d) CDA3 for the higher-level complexity CDA. 
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Baseline 

The Baseline test run was developed to use as a comparison for the other runs. This test run 
represented procedures in use at SDF. Although current-day procedures can vary widely depending on the 
specific traffic conditions, the conditions used for the Baseline test run are representative of what could be 
expected for commercial airplane operators arriving at SDF during moderately busy traffic periods, and 
were based on recorded tracks from actual operations at SDF. The vertical trajectory had three different 
segments where the aircraft was level for several miles (at 11000 ft, 6000 ft, and 3000 ft altitudes), which 
is very typical of what is done in today’s environment at most major terminal areas. 
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Figure 4. – Lateral paths of test runs. 

CDA1  

The simplest CDA test run was an uninterrupted descent, flown with no changes to the charted 
procedure. The north arrival (starting prior to the waypoint DANNY, on a direct track to DANNY) was 
chosen for this run because it would allow an uninterrupted descent, (ATC did not issue any deviations 
off the charted profile), and resulted in a run of comparable path length and time to the other CDA test 
conditions. After being cleared for the CDA, no further instructions from ATC (other than frequency 
changes) were issued until the approach clearance was issued on the base leg. This resulted in a direct 
arrival to the waypoint SILNT, which was the first waypoint in common for all the CDA scenarios. When 
flown properly, the vertical profile for this run had no level segments. 
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Figure 5. Altitude profiles of test runs 

CDA2 

The second CDA test run began as a CDA descent, but was interrupted by ATC with a speed and route 
change that required the crew to come off of the optimal descent profile to some extent. This test run used 
the arrival transition from the west, beginning prior to the waypoint CHERI, on a direct track to CHERI. 
Before arriving at CHERI, the crew was cleared for the CDA. Just after CHERI, the controller issued a 
left turn and speed change, taking the aircraft off the CDA and on a direct intercept to SILNT. Because 
the aircraft had not yet reached the deceleration segment at 10,000 ft, and the crew needed to closely 
watch the VNAV mode and make adjustments to maintain the vertical trajectory, while not exceeding the 
250-kt speed limit below 10,000 ft. The resulting lateral path, which shortened the distance to the base 
leg, was a direct cut across to the waypoint SILNT, emulating the vectoring path used by controllers 
under light traffic conditions. It was expected that this test run would result in a descent that was less 
optimal than the uninterrupted CDA. The vertical profile for this run had no level segments, but had a 
slightly more shallow descent in the middle portion of the run. 

CDA3  

The third CDA test run began the same as the second CDA test run, but included more interruptions 
from ATC. In this run, the aircraft was allowed to continue farther along the CDA until after the waypoint 
ARIES, when the controller would issue a clearance direct to the waypoint GNGER. Shortly after that, 
the aircraft was taken off the CDA with a vector to the north, essentially paralleling the downwind leg. 
After the aircraft was established on the northbound heading, the aircraft was then given clearance to 
proceed direct to the waypoint SILNT and resume the CDA. This run involved switching out of Lateral 
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Navigation (LNAV) and VNAV modes, and closely monitoring the lateral and vertical paths to ensure 
that the correct trajectory was maintained. The resulting lateral path was not as direct as in the CDA2 
runs. The vertical trajectory did not require any level segments if properly flown, but had two segments 
that were very shallow. It was expected that this test run would result in a descent that was less optimal 
than the CDA2 run.  

Crew Procedures  

Procedures for the crew to use as a guideline in conducting the CDA descent were included in a Flight 
Manual Bulletin (FMB). The FMB described the CDA procedure, and included instructions for pilots on 
how to manage their speed, altitude, and lateral route while conducting the CDA (see Appendix A). For 
all test runs, the pilots were instructed to maintain their normal procedures as much as possible, except for 
the instructions in the FMB that were specific to conducting the CDA. These consisted primarily of 
autoflight mode operation. Table 1 shows the autoflight modes to be used for each of the scenarios.  

Table 1. Autoflight modes used for the four different run types. 
Condition Lateral flight 

mode 
Vertical path 
mode 

Speed mode FMC route Comments 
 

Baseline Heading select FLCH or 
VSPD 

MCP speeds CHERI2 STAR Non-CDA descent 

CDA1 LNAV VNAV VNAV BLGRS2 RNAV 
STAR, DANNY 

CDA descent, no 
route mods 

CDA2 LNAV VNAV VNAV (w/ speed 
intervene) 

BLGRS2 RNAV 
STAR, CHERI 

CDA descent, route 
mod w/speed 
intervene 

CDA3 LNAV VNAV VNAV (w/ speed 
intervene) 

BLGRS2 RNAV 
STAR, CHERI 

Same as CDA2, but 
more complex 

 

For the CDA runs the pilots were instructed to remain in VNAV and LNAV as much as possible. This 
included the times when ATC issued changes in lateral route or speed. The speed changes were to be 
made using the SPEED INTERVENE function, thereby allowing the aircraft to remain in VNAV 
guidance. Pilots were cautioned that using SPEED INTERVENE would affect how well the aircraft 
maintained the vertical path, and they needed to be aware of their position relative to the vertical path. 
This meant that pilots needed to maintain awareness of the aircraft flight modes as much as possible. 

For the baseline run, pilots began in VNAV/LNAV, but were allowed to use whatever vertical mode 
they wanted after the initial part of the descent. After the initial descent, the aircraft leveled off and the 
autoflight system reverted to Heading Hold and Altitude Hold. Most of the pilots continued the rest of the 
descent using Heading Select and Flight Level Change to manage the lateral path and altitude, 
respectively. Since this test run emulated current-day procedures, the crew procedures were to comply 
with ATC instructions as normal.  

Experiment Design 

Run Ordering 

The four test runs were repeated twice for each test crew, to allow each pilot to act as flying pilot in 
each of the four runs. This resulted in eight test runs per crew. Because of the number of runs required, it 
was not feasible to completely counter-balance the test matrix of runs. A Latin square design was used to 
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ensure that each run occurred once in each position in the ordering of runs (see Table 2). 

Table 2. Run ordering used for this experiment. 
 1st run 2nd run 3rd run 4th run 5th run 6th run 7th run 8th run 
Crew #1 5 4 7 3 8 1 2 6 
Crew #2 1 8 3 7 4 5 6 2 
Crew #3 6 5 8 4 1 2 3 7 
Crew #4 4 3 6 2 7 8 1 5 
Crew #5 2 1 4 8 5 6 7 3 
Crew #6 7 6 1 5 2 3 4 8 
Crew #7 8 7 2 6 3 4 5 1 
Crew #8 3 2 5 1 6 7 8 4 
 
Subject Pilots 

Sixteen subject pilots were used for this study, and were recruited as crews of two (one Captain and 
one First Officer), both from the same airline. All the subject pilots were required to be currently flying 
Boeing 757s, to minimize the amount of training time needed for this study. The resulting eight crews 
were each assigned a day to participate in the study. A single day was required for training and 
completion of the test matrix of runs. The subject crews represented four different airlines: Continental 
(1), United (1), American (3), and UPS (3). Crews were specifically requested from UPS because the 
airspace that was simulated for this study is the primary hub for their operations. Most of the pilots had 
been flying regularly (more than 100 hours in the previous 90 days) when they participated in the study. 
A few pilots had not been flying as often, either because they were in managerial positions, or due to the 
lack of available trips based on their seniority in their current position (Captain or First Officer). This 
became evident in their workload ratings, which often were higher than the ratings from those pilots that 
had flown more frequently. Most of the pilots that participated in this study had 5000-10000 hours of total 
flying time, and greater than 1000 hours in the 757/767 type. 

Data collection  

The effectiveness of the CDA procedures using VNAV was determined by whether or not its use 
resulted in a decrease in noise and fuel use. Acceptability and workload associated with the CDA was 
assessed from questionnaire data, as another measure of the procedure’s effectiveness. The second 
objective, identification of potential sources of confusion, was determined partially from results of how 
well the pilots were able to follow the procedure, and partially from the pilots’ questionnaires.  

Objective data 

The main parameters used for determining the effectiveness of the CDA from the recorded simulator 
data were altitude, airspeed, latitude/longitude, throttle activity, and fuel use. Many of these parameters 
were used for computing noise exposure levels using software programs developed external to NASA. 
Other parameters of interest were the operating modes (VNAV PATH, VNAV SPD, LNAV), and use of 
flaps, speed brakes, and landing gear. 

All simulation runs were conducted using a nominal, vertically-varying wind field representative of 
typical winds in the Louisville area (Table 3).  The same winds were used in all simulation runs. 
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Table 3. Winds used during simulation runs 
Altitude 
(ft, MSL) 

Wind Speed 
(Knots) 

Wind Direction 
(True deg) 

0 2.4 208 
2461 5.7 242 
4921 9.2 262 
9843 16.0 273 
13801 20.7 274 
18289 25.9 273 
23574 31.8 272 
30065 38.9 270 
33999 42.3 270 

 
Subjective data 

Data such as workload and acceptability ratings are considered subjective, because they represent the 
pilots’ opinions, rather than direct measurements of physical (or simulated) quantities. Subjective data 
collected for this experiment included workload ratings, ratings of acceptability, clarity, or ease of use, 
and open-ended questions and comments. 

The workload ratings were obtained by means of a Bedford scale [4]. This is a 10-point scale adapted 
from the Modified Cooper-Harper scale commonly used in flight testing for rating aircraft handling 
qualities. 

The questionnaires that asked the pilots to provide a numbered rating used a 7-point scale, with the 
mid-point representing the neutral point. Some of the questions required a “Yes” or “No” answer, and 
others asked for comments or other explanations. Most of the questions on the final questionnaire were 
also given to the pilots in a pre-test questionnaire, before conducting the test runs in the simulator. When 
the pilots were given the pre-test questionnaire, they were not told that they would be seeing the questions 
again after the test runs were completed, thus enabling researchers to obtain “before and after” responses 
to many of the questions.  

Prior to beginning the initial briefing on the study, the pilots were given a test of their knowledge of 
certain VNAV modes. The nine questions on the test were intended to provide the researchers with some 
indication of the pilots’ level of understanding of VNAV modes that they had developed from their 
previous flying and simulator experiences. The pilots were not told in advance that they would be given 
this test, nor were the results discussed with them. Questionnaires are included in Appendix B. 

Results and Discussion 

Effectiveness of CDA charted procedures 

The CDA procedure’s effectiveness was assessed by analyzing the noise levels generated during the 
runs, the fuel used during the runs, and the airspeed and altitude profiles flown.  

Noise levels 

Noise levels between the Baseline and CDA runs were consistent with results from previous studies 
[3], which showed a marked reduction in noise levels for the CDA descents. Figure 6 shows curves of the 
noise exposure level versus distance to the runway for the four different test runs (in this plot no 



 

13 

differentiation is made with respect to Captain or First Officer flying). These curves were generated using 
the Integrated Noise Model (INM), version 7.0, a proprietary software package obtained from the Boeing 
Company [5]. The INM software program was also used in the LNG 1.0 study to compute noise exposure 
levels. The greatest average noise difference between the run types is at about 10 nmi from the runway, 
where the noise level was reduced by 5dB for the CDA1 and CDA2 runs over the Baseline runs. Overall, 
most of the average noise level reduction occurred in the segment between 7nmi and 15 nmi from the 
runway, for all three CDA conditions over the Baseline. As expected, the CDA1 runs (uninterrupted 
descent) generally had the most reduction in noise levels, although the CDA2 runs showed noise 
reductions at almost the same level. The CDA3 runs resulted in less reduction in noise exposure level than 
the other two CDA runs, particularly at distances between 10nmi and 16 nmi from the runway. However, 
the noise reduction over the Baseline runs was significant in all the CDA runs. 

 

65.0

70.0

75.0

80.0

85.0

90.0

0.0 5.0 10.0 15.0 20.0 25.0 30.0

Distance to Runway, nmi

N
oi

se
 E

xp
os

ur
e 

L
ev

el
, d

b

Baseline
CDA1
CDA2
CDA3

 
Figure 6. Noise Exposure Level versus Distance to Runway 

Fuel use 

Figure 7 shows the mean altitude profiles flown in this test, to illustrate the differences in descent 
profiles across the four different conditions. For analysis, the data from each condition were divided into 
three segments: before Top-of-Descent (TOD), descent, and final. The before-TOD and descent segments 
vary in path distance, depending on where the TOD was calculated for each run condition. The final 
segment is the same for all run conditions. 

From figure 7, three different Top-of-Descent locations (expressed as distance-to-go) can be seen: one 
for the Baseline condition, another for the CDA3 condition, and a third for the CDA1 and CDA2 
conditions. In the fuel use analysis, it is useful to identify the distance-to-go locations of these TOD 
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points, as well as the location of a common point that includes the entire descent profiles for all four 
conditions. This latter point is located just prior to the Baseline TOD, at a distance-to-go of about 81.8 
nm. To simplify the data analysis, the “Common Point” (CP) was established at a distance of 82.8 nm 
distance-to-go, which is the beginning point for the CDA1 data. For the fuel use analysis, the descent 
segment is defined as the data beginning either at the individual TOD location for each of the four run 
types, or the CP, and ending at the 1000-ft (MSL) altitude point.  

The 1000-ft altitude point corresponds to a distance-to-go of 1.5 nm. Although the vertical profiles 
(Figure 7) for all the descents merge prior to this point, it was chosen as the EOD because some of the 
fuel burn effects of the different test conditions continued up to just prior to this point, and thus affected 
the fuel use analysis for the descent segment. The final segment includes the remainder of the data (after 
the EOD point).  
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Figure 7. Mean altitude profiles of the test runs. 

Table 4 shows the percent mean fuel reduction for the three CDA conditions, as compared to the 
Baseline condition. The portion of data from the last (final) segment was not included in these 
calculations because the fuel use was the same for all conditions. The different columns show the percent 
reduction in fuel use computed from the following points: the beginning of each run condition, the TOD 
point for each run condition, and the Common Point.  

Table 4. Fuel reduction  (from Baseline runs) 
Run Type From start 

of run, % 
From own 
TOD, % 

From CP, 
% 

CDA1 25.0 40.5 11.0     
CDA2 19.6 37.2 9.4 
CDA3 11.6 28.4 6.7 
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A direct comparison of the fuel used in the descent can be made only if the descent from each 
condition’s TOD location is considered. A comparison of fuel use from the CP provides a realistic 
estimate of the fuel savings during the descent, because it includes the effect of the fuel burned during the 
longer cruise portion of the CDA runs. The computations for the descent segments from the CP are based 
on identical total distance flown (because of how the CP is defined). The longer cruise distance associated 
with the CDAs lessens the fuel savings, because the fuel burn rate is much higher in cruise, and offsets 
some of the CDAs’ advantage. To get a true picture of fuel savings due to a CDA descent, it is important 
to include this effect when comparing the data. 

As in the LNG 1.0 study [3], there was a marked reduction in fuel use for CDA runs over current-day 
procedures. The uninterrupted CDA runs (CDA1) resulted in the greatest average fuel reduction, due 
primarily to the fact that the aircraft was operating at near-idle thrust for a large portion of the descent. In 
the CDA2 runs, there was more throttle activity as pilots attempted to adjust their speed and trajectory to 
comply with instructions from ATC. This resulted in a smaller fuel savings versus the uninterrupted 
CDA1 runs. The CDA3 runs resulted in even smaller fuel savings, due to increased throttle activity over 
that in the CDA2 runs.  However, even the fuel savings in the CDA3 runs is significant to most airline 
operations, and demonstrates an important advantage of CDA descents over current-day type of descents.  

The additional fuel savings measured from the start of the runs are attributed to the shorter distances 
flown during the CDA scenarios.  The distance-to-go (along-track distance to the runway) is shown in 
Table 5 for the four different conditions. The starting points for the runs were chosen to be at the same 
great-circle distance from the waypoint BLGRS (the initial approach fix on final), however the resulting 
distances flown were not the same for the different conditions. The longer distances for the Baseline and 
CDA3 conditions were due to additional vectoring that was part of the way these conditions were defined. 
A full tabulation of the fuel and distance numbers for the four conditions are shown in Tables 6 through 9, 
for each of the run segments (cruise, descent from own TOD, descent from CP, and final). 

Table 5. Mean distance-to-go for all conditions (to runway threshold) 
Run Type From start 

of run, nmi 
From own 
TOD, nmi 

From CP, 
nmi 

Baseline 94.5 82.8 82.8 
CDA1 82.8 65.0 82.8 
CDA2 85.8 65.0 82.8 
CDA3 90.2 70.0 82.8 

 
Table 6. Fuel rate in cruise (before own top-of-descent) 

Run Type Fuel used, lb Path dist., 
nmi 

Fuel use rate 
lb / nm 

Baseline 227.4 11.7 19.4 
CDA1 359.4 17.8 20.2 
CDA2 395.9 20.8 19.1 
CDA3 392.3 20.2 19.4 

 
Table 7. Fuel rate during descent from own TOD to EOD 

Run Type Fuel used, lb Path dist., 
nmi 

Fuel use rate 
lb / nm 

Baseline 1215.5 81.3 15.0 
CDA1   722.9 63.5 11.4 
CDA2   763.9 63.5 12.0 
CDA3   869.8 68.5 12.7 
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Table 8. Fuel rate during descent from CP to EOD 
Run Type Fuel used, lb Path dist., 

nmi 
Fuel use rate 
lb / nm 

Baseline 1215.5 81.3 15.0 
CDA1 1082.1 81.3 13.3 
CDA2 1101.0 81.3 13.5 
CDA3 1134.1 81.3 13.9 

 
Table 9. Fuel rate in final segment (last 1.5 nm) 

Run Type Fuel used, lb Path dist., 
nmi 

Fuel use rate 
lb / nm 

Baseline 98.0 1.5 65.3 
CDA1 96.1 1.5 64.1 
CDA2 96.8 1.5 64.5 
CDA3 96.3 1.5 64.2 

 
A more detailed analysis can give us an indication of the relative fuel penalties due to a less-optimal 

descent and to a longer path distance; however it is not possible for this study to definitively assign these 
percentages in a general sense to all descents. There are many other factors that affect the fuel advantage 
to be gained from a shorter path or more optimal descent, and in a busy terminal area there are also many 
sources of possible alterations to the descent that could affect the resulting gain or loss. From the fuel 
numbers computed for this experiment, it was estimated that neither of the factors stated (path length or a 
more optimal descent) had a predominant effect on the fuel savings. A dedicated trade study could better 
answer this question for the more general cases, with variables such as aircraft type, altitude, power 
setting, wind environment, path length, and descent profile. This is an important issue that should be 
addressed, as it can influence an operator’s preferences for descent trajectories. 

Profiles flown 

Altitude 
Mean vertical profiles (and standard deviations) for each of the four different run types are shown in 

Figures 8a, 8b, 8c, and 8d.  

Figure 9 shows the mean crossing altitudes for all four runs at the four waypoints in the segment 
between 5nmi and 20nmi before the runway. The altitudes are shown only at these waypoints because the 
altitudes at the others were not dependent on the type of run, and were the same. The difference is 
especially large at the waypoint SILNT, which marks the beginning of the base leg. The uninterrupted 
CDA runs (CDA1) had the highest mean crossing altitude, followed by the CDA2 runs, then the CDA3 
runs, and finally the Baseline runs with the lowest mean crossing altitude. These higher crossing altitudes 
contributed to the lower noise levels seen in this part of the descents. 

Airspeed 
Mean airspeed curves for the four run types are shown in Figures 10a, 10b, 10c, and 10d. The symbols 

on the graphs show the mean and standard deviation of the crossing speed at the last four waypoints prior 
to the runway. Figure 11 shows in more detail the crossing speeds at the last four waypoints before the 
runway. Although the standard deviation is on the order of 10 kts around the top-of-descent point, 
generally it is within 10 kts throughout the run (for each of the four run types), including at the waypoint 
crossings. This would indicate that during most of the runs, speed was managed within normal allowances 
observed by transport pilots (+/- 10 kts).  
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Figure 8a. Mean vertical profile for Baseline runs. 

 

distance-to-go, nmi

0 10 20 30 40 50 60 70 80 90

al
tit

ud
e,

 ft

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

CDA1 Mean
Standard Deviation

 
Figure 8b. Mean vertical profile for CDA1 runs. 
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Figure 8c. Mean vertical profile for CDA2 runs. 
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Figure 8d. Mean vertical profile for CDA3 runs. 
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Figure 9. Crossing altitudes at last four waypoints. 
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Figure 10a. Mean and standard deviation of airspeed for Baseline runs 
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Figure 10b. Mean and standard deviation of airspeed for CDA1 runs 
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Figure 10c. Mean and standard deviation of airspeed for CDA2 runs. 
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Figure 10d. Mean and standard deviation of airspeed for CDA3 runs. 
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Figure 11. Mean and standard deviation of crossing speeds for all run types. 
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Thrust 
Mean thrust levels are shown in Figures 12a, 12b, 12c, and 12d for each of the four run types. 

Integrating the area under the mean thrust curves for the four run types gives an indication of which curve 
has overall higher thrust levels during that portion of the run. Only the last 60 nmi of each run were used, 
so that the CDA runs were not unfairly penalized with the higher thrust settings associated with the longer 
distance flown at cruise altitude. The CDA profiles, by their nature, remain at higher altitudes until closer 
to the runway, meaning that the aircraft is operating at higher thrust settings for a longer period of time 
before the descent is initiated. Table 10 shows these thrust levels for the four runs types are shown, 
normalized by the Baseline run to indicate reduction in thrust levels during the CDA runs. 

Table 10. Normalized area under mean thrust curves. 
Run type Sum of mean thrust 

levels 
Baseline 1.00 
CDA1 0.49 
CDA2 0.51 
CDA3 0.61 
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Figure 12a – Mean and standard deviation of thrust for baseline runs. 
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Figure 12b – Mean and standard deviation of thrust for CDA1 runs. 
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Figure 12c – Mean and standard deviation of thrust for CDA2 runs. 
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Figure 12d – Mean and standard deviation of thrust for CDA3 runs. 

The mean thrust levels for the four run types are plotted together in Figure 13. Comparing the last 15-
20 nm of this curve with Figure 6 (which shows the mean noise levels for the four run conditions) shows 
some similar patterns, indicating that the thrust levels strongly affected the perceived noise levels 
computed with the INM program. 
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Figure 13. Mean thrust levels for four runs types, last 30nmi of runs. 
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CDA Usability Ratings 

To obtain a subjective measure of the CDA usability, the subject pilots were asked to rate the 
difficulty of conducting a CDA descent with VNAV, using a seven-point rating scale as shown in the 
figures below. Usability is another measure of the effectiveness of the procedures, because the pilot will 
not use them if they find them to be too difficult. The pilots were asked in separate questions to rate the 
difficulty of the procedures for managing altitude, path, and speed. Figures 14a, 14b, and 14c show the 
mean and standard deviation of the pilots’ responses to these questions. The pilots were asked these 
questions both before and after the test runs were conducted, and both results are shown in the figures. 

The mean ratings for all pilots for managing altitude, path, and speed were all below 3. This indicates 
that, overall, they felt the procedures were below average in difficulty (although some pilots rated the 
procedures higher than 3).  

Differences between the responses on the questionnaire taken before the test and those on the 
questionnaire taken after the test were not statistically significant. For the question about managing speed 
(figure 14c), the “after” rating was slightly higher (slightly more difficult) than the “before” rating, 
indicating that, after having conducted the test runs, the pilots felt the procedures to be slightly more 
difficult. Although pilots rated the procedures easy to use, the researchers observed that the crews did not 
always follow them as they had been briefed. 

Very Difficult

The procedures for managing altitude between the waypoints CHERI and BLGRS are:

1 2 3 4 5 6 7

before test
after test

Very Easy Average  
 

Figure 14a – Means and standard deviations of pilot ratings of procedures for managing altitude. 

 
The procedures for managing the lateral path between the waypoints CHERI and BLGRS are:

Very Easy Very Difficult
1 2 3 4 5 6 7

before test
after test

Average  
 

Figure 14b – Means and standard deviations of pilot ratings of procedures for managing lateral path. 
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Very Difficult

The procedures for managing speed between the waypoints CHERI and BLGRS are:

1 2 3 4 5 6 7

before test
after test

Very Easy Average  
 

Figure 14c – Means and standard deviations of pilot ratings of procedures for managing speed. 

Pilot ratings for acceptability of CDA chart 

Pilot ratings for acceptability of the CDA chart are shown in Figure 15. The pilots rated the chart 
acceptable, with means and standard deviations of the ratings under 3, indicating that they understood the 
procedures well (before the test). Ratings taken after the test showed slightly more consistency. Pilot 
comments also supported these ratings. 

 

Completely
Acceptable

Completely
Unacceptable

For most pilots, the BLGRS RNAV chart is:

1 2 3 4 5 6 7

before test
after test

Average
 

 
Figure 15 – Means and standard deviations of pilot ratings of BLGRS RNAV chart. 

Pilot Workload Ratings 

Pilots were asked to rate the perceived workload at various points during each of the runs, using a 
Bedford rating scale (see Figure 16) for determining the rating. The Bedford scale asks the subject to 
provide a rating indicating their spare mental capacity. Spare capacity is the pilot’s ability to attend to 
secondary tasks, and gives an indication of how much work is required to attend to the primary task. In 
this experiment the primary task was managing the CDA descent. Examples of secondary tasks for the 
pilots are changing the radio frequency and completing checklists. The Bedford scale has been used and 
evaluated in many studies, and can provide a more sensitive workload rating than a rating that is 
administered after the run has been completed [4]. 

The workload rating is determined by following the decision tree illustrated on the scale, beginning at 
the bottom. If the response to the question is yes, the pilot continues to the next question above. When the 
response is “yes”, the pilot continues to the right, where the statement that best represents the workload 
level must be chosen. The number next to that statement is the pilot’s workload rating. For this 
experiment, these workload ratings give an indication of whether the CDA crew procedures can be 
integrated into a current-day flight deck environment relatively easily. 
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For this study, the pilots’ workload ratings were solicited at five different locations during each run, in 
the order and at the locations shown in Figure 17. The first location (marked 1 in the figure) was shortly 
after the start of the run, during the cruise portion. The second location (2) was during the initial part of 
the descent, before any changes were made to the descent trajectory. It was expected that pilot workload 
ratings at these two locations would be low. The third location (3) was after the pilots had completed the 
ATC-issued changes to the descent. It was anticipated that the ratings at this location would be 
substantially higher than at the first two. The fourth location (4) was on the base leg of the traffic pattern.,  
after all the CDA runs would have been back on the CDA descent again, and in VNAV. The last location 
(5) was on final approach after the last waypoint of the CDA procedure, and before the final approach fix 
(FAF), named CHRCL. At this location, all runs (including the baseline run) would have been equivalent, 
since they were all on the Runway 17R ILS Approach procedure (the CDA procedure ended at BLGRS).  
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Figure 16. Bedford Workload Rating Scale 
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Each pilot provided their own workload ratings by making a mark on a paper scale that was provided 
to each of them. Since both pilots were providing individual workload ratings, they were asked to not 
comment orally on their ratings during the actual test runs, so that they did not influence each other’s 
ratings. During the initial oral briefing, the pilots were given time to study the workload rating scale. They 
also were required to use it during the practice runs in the simulator, so they could become accustomed to 
the rating scale itself, and to the approximate locations where they would be asked to provide ratings.  

Results from the pilot workload ratings are shown in Figure 18. The mean and standard deviation of 
the ratings are shown separated by run condition for each of the five locations where the ratings were 
provided.  

At each location except the third one (before SILNT), workload ratings were very similar across the 
four run conditions. For the “Before SILNT” location, the workload was rated highest for the CDA with 
multiple interruptions, lower for the CDA with one interruption (CDA2) runs, followed by the 
uninterrupted (CDA3) runs, and lowest for the baseline runs. This indicates that the pilots felt the 
Baseline runs to be lowest workload, which makes sense because this is the procedure with which they 
are the most familiar. This was followed, in increasing order of workload, by the CDA conditions in order 
of increasing complexity, which also makes sense. A statistical analysis (Mann-Whitney Rank Sum Test) 
on the data indicated a statistically significant difference (P=0.013) only for the comparison of workload 
ratings for the CDA3 runs versus the Baseline runs at the third location (before SILNT). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 17 – Locations for workload assessments. 
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Overall, the mean workload ratings for the first location (Cruise) were the lowest, as expected since 
the aircraft was fully coupled in cruise flight. At each of the last two locations (Base Leg and Final), the 
workload ratings were very similar across the four run conditions. The ratings at these two locations were 
about the same as for the Before SILNT location. This suggests that the pilots felt that the workload 
associated with the CDAs, including the modifications issued by ATC, was about the same as the 
workload associated with final approach.  

The means for all the conditions at all the locations were below three, indicating that workload levels 
were considered to be within acceptably low levels, and that the pilots felt that the workload associated 
with the CDA procedures conducted with VNAV was comparable to that associated with current-day 
operations. 
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Figure 18 – Means and standard deviations of pilot workload ratings 

Clarity of CDA procedures 

Assessment of the clarity of the CDA procedures gives an indication of whether the procedures are 
confusing or should be modified to clarify potential sources of confusion. This assessment was done by 
obtaining pilot opinions using a structured questionnaire. Results from the specific questions that address 
clarity of the procedures are shown in Figures 19a, 19b, and 19c, separated by “before” and “after” the 
test responses. Mean ratings indicated that most of the pilots felt that they understood the procedures for 
managing altitude and lateral path well, both before and after having completed the test runs, but slightly 
better after the test. The differences between the “before” and “after” responses for these questions were 
not statistically significant. 
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Very Unclear

The procedures for managing altitude between the waypoints CHERI and BLGRS are:

1 2 3 4 5 6 7

before test
after test

Very Clear Average  
 

Figure 19a - Pilot ratings of procedures for managing altitude. 

  

Very Clear Very Unclear

The procedures for managing the lateral path between the waypoints CHERI and BLGRS are:

1 2 3 4 5 6 7

before test
after test

Average  
 

Figure 19b - Pilot ratings of procedures for managing lateral path. 

Procedures for managing speed were rated as being slightly less clear after having completed the runs 
(Mean = 1.87 before the runs, versus M=2.5 after the runs), however the differences were not statistically 
significant. The pilots’ comments on the questionnaires indicated that some needed further clarification 
on the procedures for managing speed. 

  
The procedures for managing speed between the waypoints CHERI and BLGRS are:

Average Very Unclear
1 2 3 4 5 6 7

before test
after test

Very Clear  
 

Figure 19c - Pilot ratings of procedures for managing speed. 

Ratings for overall level of understanding of the procedures improved by more than a point after the 
test compared with the ratings taken before the test (Figure 20). A Mann-Whitney Rank Sum test on the 
difference in the ratings for this question showed this to be a statistically significant difference (P=0.038). 
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I do not
understand

it at all

I understand
it completely

Please rate your overall understanding of the CDA Arrival procedure:

1 2 3 4 5 6 7

before test
after test

I understand it,
but still have

some questions  
 

Figure 20 - Pilot ratings of overall understanding of CDA Arrival Procedure 

Identification of potentially confusing aspects of procedure 

An important observation made during this test was that most of the subject pilots descended such that 
they crossed the waypoint SILNT at the charted restriction, rather than above that altitude, as was 
specified in the chart. This action partially defeated the purpose of having this type of restriction, which 
was to maintain a higher vertical profile, while also maintaining flexibility in the crossing restriction to 
allow for wind and equipment variations. Since many pilots would probably revert to habits from their 
previous training and also aim to cross “AT” the published altitude, a solution to this would be to modify 
the chart, making this altitude higher. Although it would take away some of the flexibility in the 
procedure, it would help ensure that the aircraft stayed higher during a noise-sensitive part of the arrival. 
Without additional pilot training or automation that could provide better guidance for conducting this type 
of descent, changing the charted restrictions is the easiest way to ensure that a higher vertical profile is 
maintained. 

Pre-test VNAV Questionnaire 

Prior to starting the briefing before the start of the simulation, the subject pilots were given a short 
questionnaire to assess their knowledge of the VNAV modes. This was meant to be a way of determining 
their level of awareness of which mode the aircraft was in during portions of the descent, but the results 
were not associated in any way with the data analysis. Although the wording of the questions can affect 
the answers given, it was clear that many pilots could not recall the autoflight modes that would be 
displayed during the situations presented in the questions. Since the set of subject pilots for this 
experiment was small, a more dedicated survey over a much wider population would be necessary in 
order to draw any general conclusions regarding pilots’ mode awareness and understanding. However, 
some interesting trends were observed from this group of pilots’ responses. 

Among the questions that were answered correctly by most (more than 75%) of the pilots were the 
ones that asked about the trade-off of path and speed when in VNAV PATH or VNAV SPEED modes 
(i.e., whether speed is sacrificed to maintain path, or vice versa). However, most pilots were not able to 
correctly identify the modes to which VNAV switched during the initial descent (to IDLE, then 
THROTTLE HOLD). Less than half (44%) recognized that, upon glideslope capture the commanded 
speed would revert to the current aircraft speed.  More than half (63%) knew that the speed would revert 
back to the FMC programmed speed after the Mode Control Panel (MCP) speed window was closed 
(speed intervene function was de-selected). Most (69%) recognized that the VNAV mode during descent 
with the aircraft close to its VNAV path would be VNAV PATH if the MCP window was closed and 
VNAV SPEED if the MCP window was open. Another similar question asked what mode the aircraft 
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would be in if it was in a VNAV descent with the MCP speed window open (without specifying how 
close the aircraft might be to its VNAV path), but only half recognized that the aircraft would be in 
VNAV SPEED mode (speed intervene) as long as the MCP window was open. Although it is understood 
that there can be slight differences in the mode logic depending on specific implementation and other 
factors such as the phase of flight, it was expected that the pilots would understand that the nature of the 
questions pertained to the descent procedure, as was mentioned in the text of the questions. 

The results of these questions indicated that, with current training levels, many of the subject pilots in 
this experiment were not as aware of the autoflight modes as they would need to be to fly an optimal 
CDA descent using VNAV. The most optimal CDA descents require a careful exchange of kinetic and 
potential energy (speed and altitude) as the aircraft descends. To best execute a CDA with conventional 
guidance requires a solid understanding of the interactions of the VNAV modes, the MCP windows, and 
FMC pages, and how they will affect and be affected by the pilot’s control of throttle and speedbrakes.  

Pilot Comments from Questionnaire 

After all the runs were completed, the subject pilots each individually completed a questionnaire, 
which included some open-ended questions that gave them an opportunity to make suggestions for 
improvements. The questionnaire is included in Appendix A, and some of the pilot comments are 
summarized in this section. 

Charted Information 

Pilots were asked whether there was any other information they would like to see on the charts. Their 
answers included suggestions for other information often seen on charts, such as obstacles and terrain, or 
highlighting crossing restrictions at the waypoints, or in some other way making them more clear. Other 
suggestions included adding distance to the runway from the various waypoints, and straight-line 
distances between the waypoints, for when ATC gives a clearance to “proceed direct to” a waypoint.  

FMB Information 

When asked about whether there was any information missing from the CDA Flight Manual Bulletin 
that would be helpful, most of the pilots felt that there was not much missing. The most significant 
comments concerned clarification of the altitude to maintain when vectored off the CDA, and that it 
should be emphasized more that a very important part of the procedure is to not level off. Other 
suggestions included having a briefing summary guide (highlighting the procedure), and having ground 
speed read-outs to help with planning the altitude profile. 

Potential for LNAV or VNAV confusion 

The pilots were asked if they could think of situations where a pilot not familiar with LNAV or VNAV 
might become confused when using this procedure. The vast majority of the pilots said that they did not 
think there would be any problems with operating in LNAV for most pilots. The only comments on 
possible ways that a pilot could become confused might be when capturing the localizer, if the aircraft 
showed a slight deviation from LNAV on the navigation display, and another pilot mentioned that after 
getting speed and other changes to the route from ATC, it was possible for a pilot to get “behind”, 
however to a much lesser degree than with VNAV.  

For VNAV however, there were many comments on situations that could be confusing. These 
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situations involved trying to get back on the VNAV path after having been taken off of it, and pilots not 
understanding (or trusting) VNAV enough to use it effectively to conduct a VNAV descent. One pilot 
suggested simplifying the procedure by eliminating intermediate fixes (going direct to CHRCL); one pilot 
commented that some pilots who are newer to VNAV might get confused between VNAV SPD and 
VNAV PTH. Some pilots felt that most pilots were trained enough to handle most situations, and others 
felt that a CDA procedure required a greater understanding of VNAV than the average line pilot currently 
has. One pilot commented that a “simple bottom line pamphlet” or discussion on VNAV was needed, to 
explain how speed and path are interchanged during a VNAV descent. 

Post-test Pilot Comments 

Based on observations of pilots’ behavior during the test runs and conversations with pilots after the 
test runs, researchers identified opportunities for improvement, and noted some common problems in the 
way the pilots conducted the CDA descents. Post-test questionnaires also provided some insight into what 
aspects of the procedures were considered unclear or in need of further clarification by the subject pilots, 
such as with regard to management of airspeed. None of the pilots appeared to have any problem 
understanding the objectives of the CDA procedures during the pre-test briefing, and they all indicated 
that they understood the procedures, including the FMB and charted instructions, prior to conducting the 
test runs. 

Another issue that was mentioned by a few pilots in post-test discussions was the fact that some pilots 
prefer to be on the lower side of the energy profile (i.e., they prefer to decelerate and descend sooner in 
the descent) than the ideal CDA profile, which keeps the aircraft higher and delays the landing 
configuration. These pilots felt that being lower on energy would help them to better comply with 
changes from ATC, such as if they are asked to shorten the path to the runway.  

Introduction to Low Noise Guidance 

After completing the test runs and questionnaires for this experiment, the pilots were returned to the 
simulator and given an introduction to the LNG tool and displays. This consisted of a single abbreviated 
run with a researcher explaining the operation and features of the LNG tool. After this, the pilots were 
allowed to complete a test run similar to the CDA3 test run, but using the LNG guidance instead of 
conventional VNAV. The LNG guidance was activated simply by having VNAV engaged. This is in 
keeping with future plans for the concept, which is to include LNG as a sub-mode of VNAV. 

Although simulator data, simulator displays, and verbal comments from the pilots were recorded, the 
pilots were not asked to complete any workload data or other questionnaires. The simulator data showed 
that the noise level (as computed by the INM program) was less for the LNG runs than for the comparable 
CDA run done with VNAV. Because this experiment was designed to be an evaluation of CDAs using 
conventional guidance technology, no attempt was made to include the LNG test runs as part of a 
balanced test matrix with the other runs. Thus, a direct comparison of the LNG and non-LNG runs is not 
truly valid, but it can give us an idea of what could be expected in a study where a direct comparison was 
made. 

Concluding Remarks 

This simulation study investigated the use of Continuous Descent Arrival procedures for conducting a 
descent through a busy terminal area, using conventional automation (in the form of VNAV). The 
procedures and chart were designed to be easy to understand, and to make it easy for the crew to make 
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changes via the Flight Management Computer Control-Display Unit (FMC-CDU) to accommodate 
changes from ATC. The test runs were intended to represent situations typical of what exists in many of 
today’s terminal areas, including interruptions to the descent in the form of clearances issued by ATC. 

The results showed that the pilots were able to conduct the descents, even when interrupted by ATC 
with instructions that took the aircraft off of the VNAV path, laterally, vertically or both. The 
uninterrupted descent resulted in the most optimal profile, which translated to the lowest perceived noise 
levels and lowest amount of fuel burned. The potential fuel savings could be significant, on the order of 
10% to 20% less fuel used in the descent segment. These benefits were reduced as the interruptions from 
ATC increased and took the aircraft off its optimal descent path, but all three CDA run types resulted in 
quieter and more fuel efficient descents than with current-day procedures. The fuel results from this 
experiment did not show a definitively predominant effect on fuel use of either path length or how 
optimal the descent was, but dedicated trade studies could provide more insight into this important issue. 

The workload associated with conducting the descents were rated comparable to workload with 
current-day procedures (non-CDA). Pilots were able to conduct the descents with a minimum amount of 
time allowed for studying the instructions and charts they were given. Minor improvements to the chart 
and procedures were identified that can clarify the altitude and speed constraints and clearances, and 
reduce the potential for confusion.  

The actions and comments of many of the pilots in this experiment suggest that a CDA procedure 
requires more understanding of VNAV than the average line pilot currently has, particularly with respect 
to knowledge of the VNAV modes and their interactions with the MCP and FMS. 

At the conclusion of the test runs, pilots were introduced to an energy-based concept for conducting 
CDA descents. Reactions were very positive from the subject pilots, with all of them indicating that this 
type of guidance could make CDA descents much easier to conduct, with the only cause for concern 
being to ensure that the aircraft speed was below the flap extension speed prior to reaching the flap 
extension point that is generated and displayed on the ND by the low-noise algorithm. 
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FOR RESEARCH ONLY 

   

INSTRUCTIONS TO SUBJECT PILOTS 
____________________________________________________________________________ 
 
FLIGHT MANUAL BULLETIN 
____________________________________________________________________________ 
 
Revision 4.2, 5/07/2004 
 

CONTINUOUS DESCENT APPROACH (CDA)  

BACKGROUND AND SUMMARY 

The Continuous Descent Approach (CDA) has been identified as a beneficial method for 
operationally reducing community noise near airports.  A secondary benefit of the CDA is lower 
fuel usage during the descent. The CDA is designed to minimize level segments during approach, 
especially at low altitudes. This keeps the aircraft higher and at reduced thrust settings during most 
of the descent in the terminal arrival area.  Typically, the altitude crossing restriction at the Initial 
Approach Fix (IAF) of the Instrument Landing System (ILS) approach is raised so that glideslope 
intercept occurs approximately at the turn to final approach.  A CDA can be flown accurately with a 
Flight Management System (FMS) -equipped aircraft, however the way in which the vertical profile 
is managed can vary substantially across pilots and aircraft types. If the vertical profile is not 
managed properly, the aircraft could reach the IAF altitude early, requiring an undesired level 
segment to the IAF. Properly managing the aircraft’s total energy (speed and altitude) throughout 
the descent can minimize this problem. To best comply with altitude and speed restrictions, while 
remaining close to the optimal descent trajectory, the CDA should be flown with vertical guidance 
in the VNAV (Vertical Navigation) mode. To conduct an effective CDA descent with VNAV, pilots 
should have a good understanding of how this mode transitions among its sub-modes and 
interacts with other autoflight systems to meet speed and altitude constraints. 

A CDA was developed for Louisville International Airport (SDF) by modifying the Cheri Two 
Standard Terminal Arrival Route (STAR).  The new procedure, called the Bluegrass RNAV Arrival, 
is a CDA procedure, and includes lateral transition segments to the ILS IAF, named BLGRS.  The 
depicted routes represent the longest routing necessary to accommodate high traffic conditions. Air 
Traffic Control (ATC) Approach Control will issue instructions to descend on the Bluegrass RNAV 
Arrival.  Prior to turning onto the downwind leg, the route will typically be shortened via a “direct to” 
clearance to a waypoint closer to BLGRS. While on the arrival, the crew is responsible for 
complying with charted speed and altitude crossing restrictions. ATC may also issue speeds and/or 
altitudes that are different from those shown on the chart. The crew must comply with any new 
instructions issued by ATC, until instructed to resume the RNAV Arrival. The crossing conditions at 
BLGRS allow for a smooth transition to the ILS approach, however ATC may clear the aircraft for a 
different type of approach. 

This bulletin describes clearances, instructions, and crew procedures for conducting the CDA. The 
last page contains a checklist for conducting the CDA with standard VNAV functions. 
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NOMINAL CDA CLEARANCES 

Descent clearance for the Bluegrass RNAV Arrival:  
 
• "Descend via the Bluegrass RNAV Arrival"; 
   “Proceed direct ABCDE, then descend via the Bluegrass RNAV Arrival” 
 
This clearance may be issued at any time, and allows the crew to descend on the BLGRS RNAV 
Arrival until the fix BLGRS. Typically it is issued before the initial fix on the arrival (CHERI, DANNY, 
or KWIET). However, this descent clearance may also be issued in conjunction with a “direct to” 
one of the other waypoints on the arrival. This allows the aircraft to continue descending on the 
remainder of the RNAV arrival, via the indicated waypoint. The crew must comply with all charted 
altitude and speed restrictions from (and including) that waypoint on, unless otherwise instructed 
by ATC. 
 
Pilots shall advise ATC upon beginning the descent (“…leaving 18000 feet…”). Pilots shall advise 
ATC upon initial contact that they are descending on the Bluegrass RNAV Arrival (“…descending 
through XXXXX feet on the Bluegrass RNAV Arrival”). 
 
Deviations from the RNAV Arrival: 
 
At any time after initiating the descent, ATC may issue speed, heading, or altitude changes that are 
different from those on the RNAV Arrival. Subsequent instructions may be issued to continue the 
descent on the Arrival.  Examples of instructions taking the aircraft off the Arrival are listed below 
(these may be issued individually or grouped): 
 
• "Turn left (right), heading XXX."   
 
This instruction takes the aircraft off of the RNAV Arrival. A new, FMC-programmed lateral route is 
required in order to continue descending on the Bluegrass RNAV Arrival. ATC-issued instructions 
must be complied with until the crew is cleared to again descend via the Arrival, at which point the 
charted restrictions once again apply. 
 
• "Descend and maintain YYYY."   

This instruction requires the crew to descend and maintain the ATC-issued altitude until instructed 
otherwise by ATC. If the crew is subsequently cleared to continue descending on the Arrival, the 
crew must revert to the charted altitude profile; this begins with the first waypoint (the “to” waypoint) 
on the arrival, where it is re-joined. If there is no altitude restriction at this waypoint, the last ATC-
issued altitude is used. 
 
• "Reduce speed to XXX knots.”  
 
This instruction requires the crew to maintain the issued speed until instructed otherwise by ATC. If 
the crew is subsequently cleared to continue descending on the Arrival, the crew must revert to the 
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charted speed profile; this begins with the first waypoint (the “to” waypoint) on the arrival, where it 
is re-joined. If there is no speed restriction at this waypoint, the last ATC-issued speed is used. 
 
• "XX miles from Churchill (CHRCL), cleared ILS Runway 17R approach, maintain XXX kts to 
Churchill."   

This is a normal approach clearance, and is issued prior to the IAF waypoint (BLGRS). 

 
CREW PROCEDURES FOR CONDUCTING THE CDA 

While descending on the RNAV Arrival, keeping the aircraft in full LNAV/VNAV mode best enables 
the crew to comply with charted altitude and speed constraints, and to maintain a profile close to 
the optimal CDA profile. If ATC issues instructions that take the aircraft off of the RNAV Arrival, the 
crew may use other autoflight functions to comply with the verbal instructions, but should remain in 
VNAV as much as possible throughout the descent to achieve the most efficient profile. 

Lateral Route Management 

The Bluegrass RNAV Arrival and transitions are defined in the FMC database using all the 
waypoints shown on the chart, ending at BLGRS. This sequence of waypoints defines the longest 
route, and can be easily modified to a shorter route when instructed by ATC. Unless traffic 
conditions do not permit it, ATC will shorten the RNAV route by issuing instructions to proceed 
directly to a waypoint close to BLGRS. For timely compliance, the crew may use the HDG (heading 
select) function on the Mode Control Panel (MCP) to turn towards the cleared waypoint, while 
remaining in VNAV.  To proceed on the RNAV route, the crew must modify the FMC route to go 
“direct-to” the indicated waypoint. After the new route is executed, the crew must then re-engage 
LNAV and VNAV (if not already engaged) to continue. 

Altitude Management 

With the aircraft in VNAV, the descent will be managed according to the VNAV vertical profile. 
However, it is crucial that pilots monitor throughout the descent the amount of deviation from the 
programmed VNAV path using the vertical path deviation indicator on the Navigation Display (ND). 
If the aircraft’s path deviates too much from the programmed path, it might not be possible to 
recapture it until the aircraft is on final approach. This could result in VNAV exhibiting unexpected 
behaviors. If the aircraft path were excessively low, an extended level segment might result, 
producing excessive noise. If the aircraft path were excessively high, it might not be possible to 
intercept the glide slope and continue the approach. 

If the pilot feels that VNAV is not managing the vertical path in an acceptable manner, 
speedbrakes and throttle should be used to augment VNAV guidance, or another pitch mode may 
be selected to better comply with the vertical profile. 

Speed Management 

With the aircraft in VNAV, speed is controlled by the autoflight guidance to comply with the speed 
profile programmed in the FMC. If ATC issues a speed change, the crew must use the VNAV 
speed intervene function to comply with the ATC instruction in a timely manner. Speed intervene is 
selected by pushing the MCP SPD knob to open the MCP speed window and dialing in the new 
speed. Descending in VNAV-speed-intervene will likely cause the aircraft to deviate from the 
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programmed vertical profile. This increases the possibility that the descent could be completed too 
early, and the aircraft would level off prior to intercepting the glide slope. This is not the optimal 
vertical profile, since this low-altitude level segment is what a CDA descent is designed to avoid. 
To minimize the possibility of having a level segment, the crew may adjust the aircraft descent rate 
(using thrust while in THR HOLD and VNAV SPD) to obtain a better profile and meet the next 
waypoint constraint. 

If the crew is then cleared to resume the RNAV Arrival while still in VNAV-speed-intervene, they 
may either continue in VNAV-speed-intervene (managing all subsequent charted speed reductions 
by dialing them in the MCP speed window), or they may return to full VNAV. 

If the crew chooses to de-select the VNAV-speed-intervene function and return to full VNAV, the 
SPD knob must not be pushed until after crossing the next speed-constrained waypoint on the 
RNAV arrival. If the SPD knob is pushed prior to that, the aircraft may revert to the old VNAV 
descent speed (unless the new one is programmed into the FMC). The old descent speed could be 
much higher than the current aircraft speed, and might cause the autoflight guidance to command 
a sharp acceleration, followed by an attempt to decelerate again to the next constraint speed. 
 
It is crucial to monitor the vertical path deviation indicator on the ND whenever the speed intervene 
function is used, as this will affect how well the aircraft remains on the vertical path. The crew may 
use another pitch mode to ensure compliance with all restrictions (including the maximum speed 
requirement below 10,000 feet), if they feel that remaining in VNAV will not do so. Speedbrakes 
should be used to add drag if needed. 

Flap and Gear Deployment 

To maximize noise reduction, the landing gear extension should be delayed until the Final 
Approach Fix. If speed is nominal, landing gear should be extended at the FAF. If speed is more 
than 10 kts high approaching the FAF, gear should be extended early to enable the aircraft to 
achieve a stabilized approach by 1000 feet AGL. 
 
Flap deployment should follow the normal speed schedule. As speed is reduced throughout the 
descent, the corresponding flaps should be deployed.  
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CDA Approach with VNAV 

Checklist 
 
 

• Must have active route in FMC with LNAV/VNAV engaged to fly CDA automatically. 
• Compliance with charted altitude crossing restrictions is critical, unless instructed 

otherwise by ATC. 
• VNAV will automatically command descents and decelerations to comply with 

programmed constraints 
• Use throttle, speedbrakes, or other pitch mode if required to adjust vertical path and 

comply with restrictions, if needed 
• Expect normal approach clearance 

  
 
LNAV, VNAV, Auto-throttle………………………………………………………………..Armed / Active 
Approaching altitude-constrained waypoint.………………Dial MCP ALT window to next constraint 
Altitude.… ………………………………..…….……..….Monitor and comply with charted constraints 
Speed………..……………………………………………..…Monitor and comply with charted speeds 
Flaps………………………………………….…………………………….as required for current speed 
 
If ATC issues clearances off the RNAV route: 
Lateral…………………………………………………………….. re-program FMC, and engage LNAV 
Altitude…………………………………………………………….dial MCP ALT window to new altitude 
Speed……..…….……………..………………………………………………………use speed-intervene 
(If rejoining the RNAV Arrival, return to top of checklist.) 
 
At glideslope capture……………………………………………...……manage speeds with MCP SPD 
At FAF, if speed/altitude are acceptable ……………….…………………………………….gear down 
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VNAV Functions 
 
 
At Top-Of-Descent while in VNAV, the aircraft throttle mode will transition from Speed (SPD) 
to __________ to _____________. (Assume that the MCP altitude window has been dialed to 
the next lower constraint, and the cruise and descent speeds are the same.) 
 
 
While descending in VNAV, with the aircraft close to the VNAV path and the MCP speed 
window closed (blank), what pitch mode would you expect to see?___________________ 
Please explain__________________________________________________________________ 
 
 
While descending in VNAV, with the aircraft within 100 ft of the VNAV path and the MCP 
speed window open, what pitch mode would you expect to see?__________________________ 
Please explain__________________________________________________________________ 
 
 
While descending in VNAV, with the MCP speed window open, what pitch mode would you 
expect to see?___________________ 
Please explain__________________________________________________________________ 
 
 
 In VNAV PATH mode, the pitch guidance is ________ on elevator, meaning that the aircraft 
sacrifices ______________to maintain______________. 
 
 
 In VNAV SPEED mode, the pitch guidance is ________ on elevator, meaning that the aircraft 
sacrifices _____________to maintain______________. 
 
 
While in an uninterrupted VNAV descent (not in speed intervene), prior to reaching 10,000 ft 
altitude the aircraft will 
______________________________________________________________________________
______________________________________________________________________________ 
 
 
 While in descent with the MCP APPROACH mode armed, upon glideslope capture the speed 
command reverts to _______________________________________________ 
 
 
While descending in VNAV with the speed intervene function, what happens to the command 
speed when the MCP speed window is closed (speed knob is pushed, exiting the speed intervene 
function)? _____________________________________________________________ 
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Post-Test Questionnaire 
BLGRS RNAV Chart 
 
After flying the BLGRS RNAV Arrival CDA procedure, please describe: 
 
1) The vertical profile that must be maintained during the descent between the waypoints CHERI 
and BLGRS 
 

 
 

 
 
2) The speeds that must be maintained during the descent between the waypoints CHERI and 
BLGRS  
 

 
 

 
 
3) The lateral path that must be maintained during the descent between the waypoints CHERI and 
BLGRS 
 

 
 

 
 
4) Is there any other information you would like to see on chart? Y N 

a. If yes, please explain 
 

 
 
 
 

5) Did you have enough time to adequately study the chart? Y N 
a. If no, how much time would be needed?  

 
 

 
6) For most pilots, the BLGRS RNAV chart is: 
 
      1                     2                    3                     4                    5                     6                     7 
      |___________|___________|___________|___________|___________|___________| 
Completely             Average     Completely 
Acceptable                                      Unacceptable  
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CDA Crew Procedures 
 
After flying the BLGRS RNAV Arrival CDA procedure, please rate how you feel about the 
following items, and provide comments, if desired: 
 
1) The procedures for managing altitude between the waypoints CHERI and BLGRS are: 
      1                     2                    3                     4                    5                     6                     7 
      |___________|___________|___________|___________|___________|___________| 
Very Easy             Average             Very Difficult       

 
      1                     2                    3                     4                    5                     6                     7 
      |___________|___________|___________|___________|___________|___________| 
Very Clear             Average             Very Unclear 
 
Comments: 
 
 
 
 
 
2) The procedures for managing speed between the waypoints CHERI and BLGRS are: 
      1                     2                    3                     4                    5                     6                     7 
      |___________|___________|___________|___________|___________|___________| 
Very Easy             Average             Very Difficult       
 
      1                     2                    3                     4                    5                     6                     7 
      |___________|___________|___________|___________|___________|___________| 
Very Clear             Average             Very Unclear 

 
Comments: 
 
 
 
 
3) The procedures for managing the lateral path between the waypoints CHERI and BLGRS are: 
      1                     2                    3                     4                    5                     6                     7 
      |___________|___________|___________|___________|___________|___________| 
Very Easy             Average             Very Difficult       
 
      1                     2                    3                     4                    5                     6                     7 
      |___________|___________|___________|___________|___________|___________| 
Very Clear             Average             Very Unclear 

 
Comments: 
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4) Is there any information missing from the FMB that you think would be helpful for 
understanding how to conduct the CDA?  Y N 

 If yes, please explain 
 
 
 
 

 
 
11) Did you have enough time to adequately study the procedures? Y N 

If no, how much time would be needed?   
 

  
 
12) Please rate your overall level of understanding of the CDA Arrival procedure: 
 
      1                     2                    3                     4                    5                     6                     7 
      |___________|___________|___________|___________|___________|___________| 
I do not             I understand            I understand 
understand        it, but still have            it completely 
it at all           some questions                    

     
 

13) Do you have any suggestions for improvements to the crew procedures? 
  

 
 
 
 
 

 
 
14) Can you think of any situations where a pilot who is not very familiar with VNAV might 
become confused regarding what the altitude or speed of the aircraft should be while conducting 
this type of descent procedure? 
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15) Can you think of any situations where a pilot who is not very familiar with LNAV might 
become confused regarding what the lateral path of the aircraft should be while conducting this type 
of descent procedure? 
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