143 research outputs found

    Getting to know Classical Novae with Swift

    Get PDF
    Novae have been reported as transients for more than two thousand years. Their bright optical outbursts are the result of explosive nuclear burning of gas accreted from a binary companion onto a white dwarf. Novae containing a white dwarf close to the Chandrasekhar mass limit and accreting at a high rate are potentially the unknown progenitors of the type Ia supernovae used to measure the acceleration of the Universe. Swift X-ray observations have radically transformed our view of novae by providing dense monitoring throughout the outburst, revealing new phenomena in the super-soft X-rays from the still-burning white dwarf such as early extreme variability and half- to one-minute timescale quasi-periodic oscillations. The distinct evolution of this emission from the harder X-ray emission due to ejecta shocks has been clearly delineated. Soft X-ray observations allow the mass of the white dwarf, the mass burned and the mass ejected to be estimated. In combination with observations at other wavelengths, including the high spectral resolution observations of the large X-ray observatories, high resolution optical and radio imaging, radio monitoring, optical spectroscopy, and the detection of GeV gamma-ray emission from recent novae, models of the explosion have been tested and developed. I review nine novae for which Swift has made a significant impact; these have shown the signature of the components in the interacting binary system in addition to the white dwarf: the re-formed accretion disk, the companion star and its stellar wind.Comment: 11 pages. As publishe

    X-Ray Grating Observations of Recurrent Nova T Pyxidis During The 2011 Outburst

    Full text link
    The recurrent nova T Pyx was observed with the X-ray gratings of Chandra and XMM-Newton, 210 and 235 days, respectively, after the discovery of the 2011 April 14 outburst. The X-ray spectra show prominent emission lines of C, N, and O, with broadening corresponding to a full width at half maximum of ~2000-3000 km/s, and line ratios consistent with high-density plasma in collisional ionization equilibrium. On day 210 we also measured soft X-ray continuum emission that appears to be consistent with a white dwarf (WD) atmosphere at a temperature ~420,000 K, partially obscured by anisotropic, optically thick ejecta. The X-ray continuum emission is modulated with the photometric and spectroscopic period observed in quiescence. The continuum at day 235 indicated a WD atmosphere at a consistent effective temperature of 25 days earlier, but with a lower flux. The effective temperature indicates a mass of ~1 solar mass. The conclusion of partial WD obscuration is supported by the complex geometry of non-spherically-symmetric ejecta confirmed in recent optical spectra obtained with the Southern African Large Telescope (SALT) in November and December of 2012. These spectra exhibited prominent [O III] nebular lines with velocity structures typical of bipolar ejecta.Comment: Accepted to ApJ 2013 October 23, 14 pages, 9 figures, 3 table

    The discovery of 2.78 hour periodic modulation of the X-ray flux from globular cluster source Bo 158 in M31

    Get PDF
    We report the discovery of periodic intensity dips in the X-ray source XMMU J004314.1+410724, in the globular cluster Bo158 in M31. The X-ray flux was modulated by ~83% at a period of 2.78 hr (10017 s) in an XMM-Newton observation taken 2002 Jan 6-7. The X-ray intensity dips show no energy dependence. We detected weaker dips with the same period in observations taken 2000 June 25 (XMM-Newton) and 1991 June 26 (ROSAT/PSPC). The amplitude of the modulation has been found to be anticorrelated with source X-ray flux: it becomes lower when the source intensity rises. The energy spectrum of Bo158 was stable from observation to observation, with a characteristic cutoff at ~4-6 keV. The photo-electric absorption was consistent with the Galactic foreground value. No significant spectral changes were seen in the course of the dips. If the 2.78 hr cycle is the binary period of Bo158 the system is highly compact, with a binary separation of ~10e11 cm. The association of the source with a globular cluster, together with spectral parameters consistent with Galactic neutron star sources, suggests that X-rays are emitted by an accreting neutron star. The properties of Bo 158 are somewhat reminiscent of the Galactic X-ray sources exhibiting a dip-like modulations. We discuss two possible mechanisms explaining the energy-independent modulation observed in Bo 158: i) the obscuration of the central source by highly ionized material that scatters X-rays out of the line of sight; ii) partial covering of an extended source by an opaque absorber which occults varying fractions of the source.Comment: 10 pages, 4 figures, ApJ, submitted, uses emulateapj styl

    The 2011 Outburst of Recurrent Nova T Pyx: X-ray Observations Expose the White Dwarf Mass and Ejection Dynamics

    Get PDF
    The recurrent nova T Pyx underwent its sixth historical outburst in 2011, and became the subject of an intensive multi-wavelength observational campaign. We analyze data from the Swift and Suzaku satellites to produce a detailed X-ray light curve augmented by epochs of spectral information. X-ray observations yield mostly non-detections in the first four months of outburst, but both a super-soft and hard X-ray component rise rapidly after Day 115. The super-soft X-ray component, attributable to the photosphere of the nuclear-burning white dwarf, is relatively cool (~45 eV) and implies that the white dwarf in T Pyx is significantly below the Chandrasekhar mass (~1 M_sun). The late turn-on time of the super-soft component yields a large nova ejecta mass (>~10^-5 M_sun), consistent with estimates at other wavelengths. The hard X-ray component is well fit by a ~1 keV thermal plasma, and is attributed to shocks internal to the 2011 nova ejecta. The presence of a strong oxygen line in this thermal plasma on Day 194 requires a significantly super-solar abundance of oxygen and implies that the ejecta are polluted by white dwarf material. The X-ray light curve can be explained by a dual-phase ejection, with a significant delay between the first and second ejection phases, and the second ejection finally released two months after outburst. A delayed ejection is consistent with optical and radio observations of T Pyx, but the physical mechanism producing such a delay remains a mystery.Comment: Re-submitted to ApJ after revision

    Spectroscopy of high mass X-ray binaries with Swift/XRT

    Get PDF
    We present the X-ray spectroscopy study of three high mass X-ray binary systems, Vela X-1, Cen X-3 and V0332+53 using data obtained with Swift/XRT. The continuum emission of Vela X-1 is consistent with two absorbed power laws, each of them modified by different absorbing columns and with the same power law index. Moreover, the high energy part of the spectrum is modified by absorption components, like Gaussian profile, smedge} or edge} functions. We also detect emission lines and fit as Gaussians at 6.406^+0.004_-0.021 keV (Fe Kalpha) and 2.44^+0.04_-0.03 keV (S XV He_alpha). The continuum emission of Cen X-3 is consistent with two absorbed power laws, each of them modified by different absorbing columns and with the same power law index. We also detect emission lines and fit as Gaussians at 6.432^+0.020_-0.023 keV (Fe Kalpha), 6.84^+0.12_-0.10 keV (Fe XXVI), 2.90 +/- 0.18 keV Ar Kalpha and 1.12^+0.07_-0.06 keV (Ne X Ly_alpha). The presence of iron emission lines at 6.4 keV and 6.8 keV simultaneously indicates that there are at least two distinct emission sites. Fluorescence in a localized region of relatively low ionization may be responsible for the 6.4 keV emission. We could interpret the emission line at 6.8 keV as a blend of several narrow lines due to scattering of radiation from the neutron star in an extended highly ionized stellar wind. Finally, the continuum emission of V0332+53 is consistent with an absorbed power law and a Gaussian emission line to describe the soft excess at low energies. No emission lines are present in this system.Part of this work was supported by the Spanish Ministry of Education and Science Primera ciencia con el GTC: La astronomía española en vanguardia de la astronomía europea CSD200670 and Multiplicidad y evolución de estrellas masivas project number AYA200806166C0303. KLP and JPO acknowledge support from STFC. JMT & JJRR acknowledge support by the Spanish Ministerio de Educación y Ciencia (MEC) under grants PR2007-0176 & PR2009-0455. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester

    Pan-chromatic observations of the remarkable nova LMC 2012

    Full text link
    We present the results of an intensive multiwavelength campaign on nova LMC 2012. This nova evolved very rapidly in all observed wavelengths. The time to fall two magnitudes in the V band was only 2 days. In X-rays the super soft phase began 13±\pm5 days after discovery and ended around day 50 after discovery. During the super soft phase, the \Swift/XRT and \Chandra\ spectra were consistent with the underlying white dwarf being very hot, ∼\sim 1 MK, and luminous, ∼\sim 1038^{38} erg s−1^{-1}. The UV, optical, and near-IR photometry showed a periodic variation after the initial and rapid fading had ended. Timing analysis revealed a consistent 19.24±\pm0.03 hr period in all UV, optical, and near-IR bands with amplitudes of ∼\sim 0.3 magnitudes which we associate with the orbital period of the central binary. No periods were detected in the corresponding X-ray data sets. A moderately high inclination system, ii = 60±\pm10^{\arcdeg}, was inferred from the early optical emission lines. The {\it HST}/STIS UV spectra were highly unusual with only the \ion{N}{5} (1240\AA) line present and superposed on a blue continuum. The lack of emission lines and the observed UV and optical continua from four epochs can be fit with a low mass ejection event, ∼\sim 10−6^{-6} M⊙_{\odot}, from a hot and massive white dwarf near the Chandrasekhar limit. The white dwarf, in turn, significantly illuminated its subgiant companion which provided the bulk of the observed UV/optical continuum emission at the later dates. The inferred extreme white dwarf characteristics and low mass ejection event favor nova LMC 2012 being a recurrent nova of the U Sco subclass.Comment: 18 figures, 6 tables (one online only containing all the photometry

    X-Ray Flashes in Recurrent Novae: M31N 2008-12a and the Implications of the Swift Non-detection

    Full text link
    Models of nova outbursts suggest that an X-ray flash should occur just after hydrogen ignition. However, this X-ray flash has never been observationally confirmed. We present four theoretical light curves of the X-ray flash for two very massive white dwarfs (WDs) of 1.380 and 1.385 M_sun and for two recurrence periods of 0.5 and 1 years. The duration of the X-ray flash is shorter for a more massive WD and for a longer recurrence period. The shortest duration of 14 hours (0.6 days) among the four cases is obtained for the 1.385 M_sun WD with one year recurrence period. In general, a nova explosion is relatively weak for a very short recurrence period, which results in a rather slow evolution toward the optical peak. This slow timescale and the predictability of very short recurrence period novae give us a chance to observe X-ray flashes of recurrent novae. In this context, we report the first attempt, using the Swift observatory, to detect an X-ray flash of the recurrent nova M31N 2008-12a (0.5 or 1 year recurrence period), which resulted in the non-detection of X-ray emission during the period of 8 days before the optical detection. We discuss the impact of these observations on nova outburst theory. The X-ray flash is one of the last frontiers of nova studies and its detection is essentially important to understand the pre-optical-maximum phase. We encourage further observations.Comment: 12 pages, including 9 figures and 3 tables. To appear in the Astrophysical Journa

    Resolving iron emission lines in 4U 1538-52 with XMM-Newton

    Get PDF
    The X-ray Universe 2011, Presentations of the Conference held in Berlin, Germany, 27-30 June 2011. Available online at: http://xmm.esac.esa.int/external/xmm_science/workshops/2011symposium/, article id.275We present the results of a XMM-Newton observation of the high-mass X-ray binary 4U 1538-52 at orbital phases between 0.75-1.00 (in the eclipse-ingress phase). Here we concentrate on the study of discrete features in the energy range from 5.9 keV to 7.8 keV, i.e. on the iron Kα line region, using the EPIC/PN instrument on board XMM-Newton observatory. We clearly see a Kα neutral iron line at around 6.4 keV and were able to distinguish two hot lines from highly photoionized Fe XXV and Fe XXVI. We discuss the implications of the simultaneous presence of iron with both low and high ionization levels.This work was supported by the Spanish Ministry of Education and Science De INTEGRAL a IXO: binarias de rayos X y estrellas activas AYA2010-15431 and partially supported by Primera ciencia con el GTC: La astronomía española en vanguardia de la astronomía europea CSD200670. KLP and JPO acknowledge support from the UK Space Agency. JJRR acknowledges support by the Spanish Ministerio de Educación y Ciencia (MEC) under grant PR2009-0455. This work made use of data obtained through the XMM-Newton Science Archive (XSA), rovided by European Space Agency (ESA)

    Detecting emission lines with XMM-Newton in 4U 1538–52

    Get PDF
    Context. The properties of the X-ray emission lines are a fundamental tool for studying the nature of the matter surrounding the neutron star and the phenomena that produce these lines. Aims. The aim of this work is to analyse the X-ray spectrum of 4U 1538−52 obtained by the XMM-Newton observatory and to look for the presence of diagnostic lines in the energy range 0.3−11.5 keV. Methods. We used a 54 ks PN & MOS/XMM-Newton observation of the high-mass X-ray binary 4U 1538−52 covering the orbital phase between 0.75 to 1.00 (the eclipse ingress). We modelled the 0.3−11.5 keV continuum emission with three absorbed power laws and looked for the emission lines. Results. We found previously unreported recombination lines in this system at ~2.4 keV, ~1.9 keV, and ~1.3 keV, which is consistent with the presence of highly ionized states of S XV Heα, Si XIII Heα, and either Mg Kα or Mg XI Heα. On the other hand, in spectra that are both out of eclipse and in eclipse, we detect a fluorescence iron emission line at 6.4 keV, which is resolved into two components: a narrow (σ ≤ 10 eV) fluorescence Fe Kα line plus one hot line from highly photoionized Fe XXV. Conclusions. The detection of new recombination lines during eclipse ingress in 4U 1538−52 indicates that there is an extended ionized region surrounding the neutron star.Part of this work was supported by the Spanish Ministry of Education and Science Primera ciencia con el GTC: La astronomía española en vanguardia de la astronomía europea CSD200670 and Multiplicidad y evolución de estrellas masivas project number AYA200806166C0303 and partially supported by AYA2010-15431. J.J.R.R. acknowledges the support by the Spanish Ministerio de Educación y Ciencia under grant PR2009-0455
    • …
    corecore