15 research outputs found

    Virtual Laboratory of Industrial Scenarios for Training in the Areas of Automation and Contrtol

    Get PDF
    An article written in part by Jorge-Alberto Ortega-Moody and published in the November 2016 issue of DYNA Journal, pages 1-7

    VIRTUAL LABORATORY OF INDUSTRIAL SCENARIOS FOR TRAINING IN THE AREAS OF AUTOMATION AND CONTROL

    Get PDF
    The incorporation of new technologies and technological developments in the area of automation and control requires constant training of the personnel involved in such area. The majority of this training begins in the laboratories of educational institutions and training centers for automation personnel. These laboratories are where theoretical knowledge gained in the classroom is applied. Unfortunately, being limited in infrastructure, the use of those laboratories, in the best case scenarios, are restricted to only some actuators and sensors. Industry training is another source in which individual companies have their own internal training programs led by experts in the field. However, this method of training is not always successful since any error in programming of the controllers may lead into putting personnel at risk or financial losses for the company

    Virtual Reality Environment Of Excavator Training For Operation License

    Get PDF
    In 2018 unfilled construction worker jobs rose to 404,000[1]. This was an all-time high, according to the Bureau of Labor Statistics Job Openings and Labor Turnover Survey. The government has no restrictions for operating an excavator; however, it is impossible to get a job without any operation and competency documentation. For this documentation, an employer could be looking at about $1000 for the most highly recognized training, which must be reinstated every five years. Excavation operation is a highly sought-after profession, and jobs are expected to rise by over 10% until 2028. The NSF EPSCoR research project is creating a Virtual Reality environment that will allow both residential and commercial jobs to train and teach employees how to operate excavators safely and competently. The Virtual Reality scenario will also allow employers to reduce the cost of operation and competency training. As a result, several workplace scenarios have been developed that can fully amerce an excavator operator into their training and safety.https://scholarworks.moreheadstate.edu/celebration_posters_2021/1011/thumbnail.jp

    Virtual Laboratories for Training in Industrial Robotics

    Get PDF
    An article written in part by Jorge-Alberto Ortega-Moody and published in the February 2016 issue of IEEE Latin America Transactions, pages 665-672

    Perspectives on the Trypanosoma cruzi-host cell receptor interaction

    Get PDF
    Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction of the trypomastigote form of the parasite with host receptors. This review highlights recent observations concerning these interactions. Some of the key receptors considered are those for thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology and cell biology of host receptors for T. cruzi may provide novel therapeutic targets

    Enabling Smart Agriculture with Computer Vision

    No full text
    This research project focuses on the development of a computer vision application to detect diseases in five of Kentucky\u27s most commonly exported crops: soybeans, corn, alfalfa (hay), wheat, and tobacco. Using the state-of-the-art YOLOv8 object detection algorithm, we aim to create a robust and versatile tool for disease detection and classification. To facilitate this, we curated and annotated a comprehensive image dataset composed of various disease states and healthy samples for each crop. Our long-term objective is to adapt this application for deployment on drones, which can fly over farms, capturing images and enabling rapid and widespread disease detection, offering farmers the opportunity to respond promptly to potential threats. This research represents a significant contribution to precision agriculture and crop management, addressing the need for efficient disease detection methods in a rapidly evolving agricultural landscape. The integration of computer vision and drone technology has the potential to revolutionize crop monitoring, improve yield predictions, and enhance overall farm productivity, thereby ensuring food security and economic sustainability in Kentucky and beyond

    Exergetic and Thermoeconomic Analyses of Solar Air Heating Processes Using a Parabolic Trough Collector

    No full text
    This paper presents a theoretical and practical analysis of the application of the thermoeconomic method. A furnace for heating air is evaluated using the methodology. The furnace works with solar energy, received from a parabolic trough collector and with electricity supplied by an electric power utility. The methodology evaluates the process by the first and second law of thermodynamics as the first step then the cost analysis is applied for getting the thermoeconomic cost. For this study, the climatic conditions of the city of Queretaro (Mexico) are considered. Two periods were taken into account: from July 2006 to June 2007 and on 6 January 2011. The prototype, located at CICATA-IPN, Qro, was analyzed in two different scenarios i.e., with 100% of electricity and 100% of solar energy. The results showed that thermoeconomic costs for the heating process with electricity, inside the chamber, are less than those using solar heating. This may be ascribed to the high cost of the materials, fittings, and manufacturing of the solar equipment. Also, the influence of the mass flow, aperture area, length and diameter of the receiver of the solar prototype is a parameter for increasing the efficiency of the prototype in addition to the price of manufacturing. The optimum design parameters are: length is 3 to 5 m, mass flow rate is 0.03 kg/s, diameter of the receiver is around 10 to 30 mm and aperture area is 3 m2

    Use of Platforms for the Development of Virtual Applications in the Modeling of Robot Manipulators

    Get PDF
    [ES] En este trabajo se propone el uso de plataformas para el desarrollo de aplicaciones virtuales como herramientas para el modelado de robots manipuladores. La propuesta se basa en aprovechar el gran potencial que actualmente tienen estas plataformas para solucionar la dinámica de cuerpos rígidos, lo que permite modelar de forma sencilla los aspectos mecánicos del manipulador. Por otro lado, la posibilidad ofrecida por estas plataformas de incorporar código de programación en lenguajes convencionales, permite modelar el comportamiento dinámico de sistemas físicos reales, tales como sensores y actuadores, lo que hace posible la implementación de una etapa virtual de instrumentación y control tal y como se realiza en un robot real. El uso de estas plataformas permite modelar desde cero cualquier robot manipulador. El modelado de un robot paralelo reconfigurable es presentado como caso de estudio.[EN] This paper describes the use of platforms for the development of virtual applications as tools for modeling of robot manipulators. The proposal is based on take advantage of the potential that these platforms currently have for solving the rigid body dynamics, which easily allows modeling the mechanical aspects of the manipulator. On the other hand, the possibility offered by these platforms of incorporate programming code in conventional languages allows to modeling the dynamic behavior of real physical systems, such as sensors and actuators, which allows implementing the development of the instrumentation and control stage of an industrial robot in the same way as a real one. Using these platforms allows the modeling from the bases of any manipulator robot. The modeling of a reconfigurable parallel robot is presented as a case study.Sánchez-Alonso, RE.; Ortega-Moody, J.; González-Barbosa, JJ.; Reyes-Morales, G. (2017). Uso de Plataformas para el Desarrollo de Aplicaciones Virtuales en el Modelado de Robot Manipuladores. Revista Iberoamericana de Automática e Informática industrial. 14(3):279-287. https://doi.org/10.1016/j.riai.2017.04.001OJS279287143Adamo-Villani, N., Haley-Hermiz, T., Cutler, R., 2013. Using a Serious Game Approach to Teach 'Operator Precedence' to Introductory Programming Students, In 17th International Conference Information Visualisation (IV), London, 523-526. IEEE.Backlund, P., Engstrom, H., Hammar, C., Johannesson, M., Lebram, M., 2007. Sidh-a Game Based Firefighter Training Simulation, In 11th International Conference Information Visualization, Zurich, 899-907. IEEE.Brasil, I., Neto, F., Chagas, J., Monteiro, R., Souza, D., Bonates, M., Dantas, A., 2011. An intelligent and persistent browser-based game for oil drilling operators training, In 2011 IEEE 1st International Conference on Serious Games and Applications for Health (SeGAH), Braga, 1-9. IEEE.Candelas, F., Puente, S., Torres, F., Ortiz, F., Gil, P., Pomares, J., 2013. A Virtual Laboratory for Teaching Robotics, International Journal of Engineering Education, 19 (3), 363-370.Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper C., 2007. USARSim: a robot simulator for research and education, In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, 1400-1405, IEEE.Cerezo, F., Sastrón, F., 2015. Laboratorios virtuales y docencia de la automática en la formación tecnológica de base de alumnos preuniversitarios, Revista Iberoamericana de Automática e Informática Industrial, 12 (4), 419-431.da Silva-Simones, P., Ferreira, C., 2011. Military war games edutainment, In IEEE 1st International Conference on Serious Games and Applications for Health (SeGAH), Braga, 1-7. IEEE.Dalay Udai, A., Rajeevlochana, C. G., Kumar Saha, S., 2011. Dynamic Simulation of a KUKA KR5 Industrial Robot using MATLAB SimMechanics, In 15th National Conference on Machines and Mechanisms, India.Dang, X. Z., Zhou, L. S., Liao, L. P., Liang, D., 2013. Modelling and Simulation of Forward Kinematics for Planar 3-DOF Parallel Robot Based on Simulink, Applied Mechanics and Materials, 397, 1552-1557.de Gea, J., Kirchner, F., 2008. Modelling and Simulation of Robot Arm Interaction Forces Using Impedance Control, In Proceedings of the 17th World Congress, The International Federation of Automaic Control, Seoul, Korea.de O. Andrade, K., Fernandes, G., Martins, J., Roma, V., Joaquim, R., Caurin, G., 2013. Rehabilitation robotics and serious games: An initial architecture for simultaneous players, In Biosignals and Biorobotics Conference (BRC), Rio de Janerio, 1-6. IEEE.Dung, L. T., Kang, H. J., Ro, Y. S, 2010. Robot manipulator modelling in MatlabSimmechanics with PD control and online Gravity compensation, In 2010 International Forum on Strategic Technology (IFOST), Ulsan, 446- 449. IEEE.Erazo, O., Pino, J., Pino, R., Fernandez, C., 2014. Magic Mirror for Neurorehabilitation of People with Upper Limb Dysfunction Using Kinect, In 47th Hawaii International Conference on System Sciences (HICSS), Waikoloa, 2607-2615. IEEE.Fedák, V., Ďurovský, F., Üveges, R., 2014. Analysis of Robotic System Motion in SimMechanics and MATLAB GUI Environment, MATLAB Applications for the Practical Engineer, Mr Kelly Bennett (Ed.), InTech.Gallardo-Alvarado, J., García-Murillo, M., Castillo-Castañeda, E., 2013. A 2(3-RRPS) parallel manipulator inspired by Gough-Stewart platform, Robotica, 31 (3), 381-388.Gao, J. R., Wang, Y. Z, Chen, Z. P., 2014. Modelling and Simulation of Inverse Kinematics for Planar 3-RRR Parallel Robot Based on SimMechanics, Advanced Materials Research, 898, 510-513.García-García, C., Fernández-Robles, J., Larios-Rosillo, V., Luga, H., 2012. ALFIL: A Crowd Simulation Serious Game for Massive Evacuation Training and Awareness, International Journal of Game-Based Learning, 2 (3), 71-86.García-Murillo, M., Castillo-Castañeda, E., Gallardo-Alvarado, J., 2013. Dynamics of a 2(3-RRPS) parallel manipulator, In 9th Workshop on Robot Motion and Control (RoMoCo), Kuslin, 270-275. IEEE.Guo, H., Li, H., Chan, G., Skitmore, M., 2012. Using game technologies to improve the safety of construction plant operations. Accident Analysis & Prevention, 48, 204-213.Isermann, R., Schaffnit, J., Sinsel, S., 1999. Hardware-in-the-loop simulation for the design and testing of engine-control systems, Control Engineering Practice, 7 (5), 643-653.Jamali, P., Shirazi, K. H., 2012. Robot Manipulators: Modeling, Simulation and Optimal Multi-Variable Control, Applied Mechanics and Materials, 232, 383-387.Jara, C., Candelas, F., Puente, S., Torres, F., 2011. Hands-on experience of undergraduate students in automatic and robotics using a virtual lab and remote laboratory. Computers & Education, 57 (4), 2451-2461.Khayat, G., Mabrouk, T., Elmaghraby, A, 2012. Intelligent serious games system for children with learning disabilities, In 17th International Conference on Computer Games (CGAMES), Louisville, 30-34. IEEE.Koenig, N., Howard, A., 2004. Design and use paradigms for Gazebo, an open-source multi-robot simulator, In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, (3) 2149-2154, IEEE.Lancaster, R., 2014. Serious Game Simulation as a Teaching Strategy in Pharmacology. Clinical Simulation in Nursing, 10 (3), 129-137.Ljung, L., Glad, T., 1994. Modeling of Dynamic systems, PTR Prentice Hall.Mateo-Sanguino, T., Andújar-Márquez, J., 2012. Simulation tool for teaching and learning 3D kinematics workspaces of serial robotic arms with up to 5- DOF. Computer Applications in Engineering Education, 20 (4), 750-761.Ogata, K., 2010. Ingeniería de Control Moderna, PEARSON EDUCACIÓN, S.A., Madrid, 5ta ed.Palm, W. J., 1998. Modeling, Analysis, and Control of Dynamic Systems, John Wiley & Sons, New York, NY, 2nd ed.Rohmer, E., Singh, S. P. N., Freese, M., 2013. V-REP: A versatile and scalable robot simulation framework, In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, 1321- 1326, IEEE.Sam, R., Arrifin, K., Buniyamin, N., 2012. Simulation of pick and place robotics system using Solidworks Softmotion, In 2012 International Conference on System Engineering and Technology (ICSET), Bandung, 1- 6. IEEE.Sánchez-Alonso, R., González-Barbosa, J., Castillo-Castaneda, E., GallardoAlvarado, J., 2015. Kinematic analysis of a novel 2(3-RUS) parallel manipulator, Robotica (First View Paper).Sánchez-Alonso, R., González-Barbosa, J., Castillo-Castaneda, E., GarcíaMurillo, M., 2016. Análisis Cinemático de un Novedoso Robot Paralelo Reconfigurable, Revista Iberoamericana de Automática e Informática Industrial, 13 (2) 247-257.Schäfer, A., Holz, J., Leonhardt, T., Schroeder, U., Brauner, P., Ziefle, M., 2013. From boring to scoring-a collaborative serious game for learning and practicing mathematical logic for computer science education. Computer Science Education, 23 (2), 87-111.Torres, F., Candelas, F., Puente, S., Pomares, J., Gil, P., Ortiz, F., 2006. Experiences with Virtual Environment and Remote Laboratory for Teaching and Learning Robotics at the University of Alicante, International Journal of Engineering Education, 22 (4), 766-776.Zyda, M., 2005. From visual simulation to virtual reality to games. Computer, 38 (9), 25-32

    Diseño y construcción de un sistema de transporte laminar de bajo cizallamiento para la producción de masa de maíz nixtamalizada

    No full text
    La tortilla se obtiene por medio del proceso tradicional de Nixtamalización. Este proceso tiene dos inconvenientes: producción de efluentes contaminantes y ser discontinuo. La extrusión, ha resuelto la problemática de la generación de efluentes contaminantes, sin embargo, no ha podido sustituir al proceso tradicional de nixtamalización. Esto se debe a que la masa de maíz es un fluido pseudoplástico, el cual cambia su viscosidad en la presencia de velocidades de cizalla que ocurren dentro del extrusor. Con base a lo anterior, el presente trabajo propone el diseño y construcción de un Sistema de Transporte Laminar de Bajo Cizallamiento (STLBC) para la producción de masa para tortilla. Este sistema consiste de dos etapas aisladas térmicamente: Etapa de transporte y de cocimiento. Los resultados mostraron que el prototipo obtenido cumple con las características de cocimiento homogéneo, bajo cizallamiento, no produce efluentes contaminantes, y la masa obtenida, cumple con especificaciones de masa nixtamalizada
    corecore