240 research outputs found

    Simultaneous maximum-likelihood calibration of odometry and sensor parameters

    Get PDF
    For a differential-drive mobile robot equipped with an on-board range sensor, there are six parameters to calibrate: three for the odometry (radii and distance between the wheels), and three for the pose of the sensor with respect to the robot frame. This paper describes a method for calibrating all six parameters at the same time, without the need for external sensors or devices. Moreover, it is not necessary to drive the robot along particular trajectories. The available data are the measures of the angular velocities of the wheels and the range sensor readings. The maximum-likelihood calibration solution is found in a closed form

    Gait generation via intrinsically stable MPC for a multi-mass humanoid model

    Get PDF
    We consider the problem of generating a gait with no a priori assigned footsteps while taking into account the contribution of the swinging leg to the total Zero Moment Point (ZMP). This is achieved by considering a multi-mass model of the humanoid and distinguishing between secondary masses with known pre-defined motion and the remaining, primary, masses. In the case of a single primary mass with constant height, it is possible to transform the original gait generation problem for the multi-mass system into a single LIP-like problem. We can then take full advantage of an intrinsically stable MPC framework to generate a gait that takes into account the swinging leg motion

    MPC-based humanoid pursuit-evasion in the presence of obstacles

    Get PDF
    We consider a pursuit-evasion problem between humanoids in the presence of obstacles. In our scenario, the pursuer enters the safety area of the evader headed for collision, while the latter executes a fast evasive motion. Control schemes are designed for both the pursuer and the evader. They are structurally identical, although the objectives are different: the pursuer tries to align its direction of motion with the line- of-sight to the evader, whereas the evader tries to move in a direction orthogonal to the line-of-sight to the pursuer. At the core of the control architecture is a Model Predictive Control scheme for generating a stable gait. This allows for the inclusion of workspace obstacles, which we take into account at two levels: during the determination of the footsteps orientation and as an explicit MPC constraint. We illustrate the results with simulations on NAO humanoids

    Repeatable Motion Planning for Redundant Robots over Cyclic Tasks

    Get PDF
    We consider the problem of repeatable motion planning for redundant robotic systems performing cyclic tasks in the presence of obstacles. For this open problem, we present a control-based randomized planner, which produces closed collision-free paths in configuration space and guarantees continuous satisfaction of the task constraints. The proposed algorithm, which relies on bidirectional search and loop closure in the task-constrained configuration space, is shown to be probabilistically complete. A modified version of the planner is also devised for the case in which configuration-space paths are required to be smooth. Finally, we present planning results in various scenarios involving both free-flying and nonholonomic robots to show the effectiveness of the proposed method

    Humanoid gait generation for walk-to locomotion using single-stage MPC

    Get PDF
    We consider the problem of gait generation for a humanoid robot that must walk to an assigned Cartesian goal. As a first solution, we consider a rather straightforward adaptation of our previous work: An external block produces high-level velocities, which are then tracked by a double-stage intrinsically stable MPC scheme where the orientation of the footsteps is chosen before determining their location and the CoM trajectory. The second solution, which represents the main contribution of the paper, is conceptually different: no high-level velocity is generated, and footstep orientations are chosen at the same time of the other decision variables in a singlestage MPC. This is made possible by carefully redesigning the motion constraints so as to preserve linearity. Preliminary results on a simulated NAO confirm that the single-stage method outperforms the conventional double-stage scheme

    Humanoid odometric localization integrating kinematic, inertial and visual information

    Get PDF
    We present a method for odometric localization of humanoid robots using standard sensing equipment, i.e., a monocular camera, an inertial measurement unit (IMU), joint encoders and foot pressure sensors. Data from all these sources are integrated using the prediction-correction paradigm of the Extended Kalman Filter. Position and orientation of the torso, defined as the representative body of the robot, are predicted through kinematic computations based on joint encoder readings; an asynchronous mechanism triggered by the pressure sensors is used to update the placement of the support foot. The correction step of the filter uses as measurements the torso orientation, provided by the IMU, and the head pose, reconstructed by a VSLAM algorithm. The proposed method is validated on the humanoid NAO through two sets of experiments: open-loop motions aimed at assessing the accuracy of localization with respect to a ground truth, and closed-loop motions where the humanoid pose estimates are used in real-time as feedback signals for trajectory control

    Learning soft task priorities for safe control of humanoid robots with constrained stochastic optimization

    Get PDF
    Multi-task prioritized controllers are able to generate complex robot behaviors that concurrently satisfy several tasks and constraints. To perform, they often require a human expert to define the evolution of the task priorities in time. In a previous paper [1] we proposed a framework to automatically learn the task priorities thanks to a stochastic optimization algorithm (CMA-ES) maximizing the robot performance on a certain behavior. Here, we learn the task priorities that maximize the robot performance, ensuring that the optimized priorities lead to safe behaviors that never violate any of the robot and problem constraints. We compare three constrained variants of CMA-ES on several benchmarks, among which two are new robotics benchmarks of our design using the KUKA LWR. We retain (1+1)-CMA-ES with covariance constrained adaptation [2] as the best candidate to solve our problems, and we show its effectiveness on two whole-body experiments with the iCub humanoid robot

    Robust MPC-Based Gait Generation in Humanoids

    Get PDF
    We introduce a robust gait generation framework for humanoid robots based on our Intrinsically Stable Model Predictive Control (IS-MPC) scheme, which features a stability constraint to guarantee internal stability. With respect to the original version, the new framework adds multiple components addressing the robustness problem from different angles: an observer-based disturbance compensation mechanism; a ZMP constraint restriction that provides robustness with respect to bounded disturbances; and a step timing adaptation module to prevent the loss of feasibility. Simulation and experimental results are presented

    Feasibility-Driven Step Timing Adaptation for Robust MPC-Based Gait Generation in Humanoids

    Get PDF
    The feasibility region of a Model Predictive Control (MPC) algorithm is the subset of the state space in which the constrained optimization problem to be solved is feasible. In our recent Intrinsically Stable MPC (IS-MPC) method for humanoid gait generation, feasibility means being able to satisfy the dynamic balance condition, the kinematic constraints on footsteps as well as an explicit stability condition. Here, we exploit the feasibility concept to build a step timing adapter that, at each control cycle, modifies the duration of the current step whenever a feasibility loss is imminent due, e.g., to an external perturbation. The proposed approach allows the IS-MPC algorithm to maintain its linearity and adds a negligible computational burden to the overall scheme. Simulations and experimental results where the robot is pushed while walking showcase the performance of the proposed approach

    Non-Prehensile Object Transportation via Model Predictive Non-Sliding Manipulation Control

    Get PDF
    This article proposes a model predictive non-sliding manipulation (MPNSM) control approach to safely transport an object on a tray-like end-effector of a robotic manipulator. For the considered non-prehensile transportation task to succeed, both non-sliding manipulation and the robotic system constraints must always be satisfied. To tackle this problem, we devise a model predictive controller enforcing sticking contacts, i.e., preventing sliding between the object and the tray, and assuring that physical limits such as extreme joint positions, velocities, and input torques are never exceeded. The combined dynamic model of the physical system, comprising the manipulator and the object in contact, is derived in a compact form. The associated non-sliding manipulation constraint is formulated such that the parametrized contact forces belong to a conservatively approximated friction cone space. This constraint is enforced by the proposed MPNSM controller, formulated as an optimal control problem that optimizes the objective of tracking the desired trajectory while always satisfying both manipulation and robotic system constraints. We validate our approach by showing extensive dynamic simulations using a torque-controlled 7-degree-of-freedom (DoF) KUKA LBR IIWA robotic manipulator. Finally, demonstrative results from real experiments conducted on a 21-DoF humanoid robotic platform are shown
    corecore