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Abstract— We introduce a robust gait generation framework
for humanoid robots based on our Intrinsically Stable Model
Predictive Control (IS-MPC) scheme, which features a stability
constraint to guarantee internal stability. With respect to the
original version, the new framework adds multiple components
addressing the robustness problem from different angles: an
observer-based disturbance compensation mechanism; a ZMP
constraint restriction that provides robustness with respect to
bounded disturbances; and a step timing adaptation module
to prevent the loss of feasibility. Simulation and experimental
results are presented.

I. INTRODUCTION

The fundamental requirement for successful humanoid
locomotion is balance, commonly expressed by the condition
that the Zero Moment Point (ZMP) must remain in the
robot support polygon. Due to the complexity of the full
humanoid dynamics, simplified models such as the Linear
Inverted Pendulum (LIP) are adopted to relate the motion
of the Center of Mass (CoM) to that of the ZMP. These
models can be used for gait generation via Model Predictive
Control (MPC), encoding the balance requirement through
ZMP constraints [1].

MPC schemes work as long as a feasible solution exists;
in particular, a desirable property is recursive feasibility.
However, this is typically proven for the nominal case, and
may be lost in the presence of perturbations. Many papers
have therefore proposed techniques to increase the robustness
of MPC-based gait generation [2], [3], [4], [5], [6].

Since humanoid dynamics are inherently unstable, we
developed an Intrinsically Stable MPC (IS-MPC) method that
uses a stability constraint to ensure that the CoM trajectory
will be bounded with respect to the ZMP [7]. Thanks to
this constraint, IS-MPC is guaranteed to be both recursively
feasibile and internally stable.

In this paper we robustify the IS-MPC scheme using three
main components:

1) observer-based disturbance compensation through a
modified stability constraint;

2) ZMP constraint restriction for recursive feasibility
against bounded disturbances;

3) step timing adaptation to avoid imminent losses of
feasibility, e.g., due to impulsive pushes.

We briefly recall the nominal IS-MPC scheme before
describing its robust version and presenting some simula-
tion/experimental results.
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II. IS-MPC

IS-MPC provides CoM/ZMP trajectories and footsteps that
realize as closely as possible a set of candidate footsteps,
provided by a footstep planner along with step timings. The
scheme operates over time intervals of duration δ. At a
generic tk, the candidate footsteps are known over a preview
horizon, assumed to be not smaller than the MPC control
horizon Tc = Cδ.

Denoting the CoM and ZMP position respectively by pc =
(xc, yc, zc) and pz = (xz, yz, 0), the LIP model is

ẍc = η2(xc − xz),

where η =
√
g/z̄c, with g the gravity acceleration and z̄c

the constant CoM height (we focus on the x component
as an identical equation holds for the y component). More
specifically, the prediction model used in IS-MPC is a LIP
with dynamic extension where the ZMP velocity is the input.

Let us collect the decision variables over Tc as

Ẋk
z = (ẋkz . . . ẋk+C−1

z )T

Xk
f = (x1

f . . . x
F
f )T ,

where xjf is the j-th footstep within the control horizon.
The ZMP constraints require that the ZMP lies at all times

within the support polygon:

xmz (t,Xk
f ) ≤ xz(t) ≤ xMz (t,Xk

f ), (1)

for t ∈ (tk, tk+C ], where xmz (t,Xk
f ) and xMz (t,Xk

f ) are the
upper and lower bounds, which depend on the footsteps.

Kinematic constraints are also imposed to ensure that the
robot can actually execute the generated footsteps. Along x,
this translates to a maximum step length.

The stability constraint ensures that the scheme is inter-
nally stable. Indeed, the transformed coordinate

xu = xc + ẋc/η,

called capture point or divergent component of motion,
highlights the unstable dynamics inside the LIP:

ẋu = η (xu − xz).

Despite this instability, xc will remain bounded with respect
to xz provided that the following stability condition is
satisfied

xku = η

∫ ∞
tk

e−η(τ−tk)xz(τ)dτ. (2)

The latter condition depends on the future ZMP trajectory,
and is thus non-causal. To obtain a causal constraint, we split
the above integral in the integral from tk to tk + Tc, which
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Fig. 1. A block scheme of the robust IS-MPC method for gait generation. Components added with respect to the original scheme are shown in red.

depends on Ẋk
z , plus the integral from tk + Tc to ∞, in

which we use a ZMP trajectory x̃z conjectured on the basis
of the preview information (anticipative tail). This leads to
the stability constraint

η

∫ tk+C

tk

e−η(τ−tk)xz(τ)dτ = xku − c̃kx (3)

where

c̃kx = η

∫ ∞
tk+C

e−η(τ−tk)x̃z(τ)dτ.

The integral in (3) can be written in closed form as a linear
function of the ZMP velocity inputs ẋkz , . . . , ẋ

k+C−1
z .

We can now formulate the QP-MPC problem:

min
Ẋk

z ,X
k
f

‖Ẋk
f ‖2 + µ‖Xk

f − X̂k
f ‖2

subject to:
• ZMP constraints (1)
• kinematic constraints
• stability constraint

where X̂k
f = (x̂1

f . . . x̂
F
f )T is a vector collecting the candi-

date footstep position. The resulting CoM trajectory, together
with a swing foot trajectory landing at the next footstep, are
sent to the kinematic control module.

III. ROBUST IS-MPC

Consider the following perturbed LIP model

ẍc = η2(xc − xz) + w, (4)

where w collects the effect on CoM acceleration of un-
modeled dynamics, parametric uncertainties and/or external
forces. In particular, we assume that

w(t) = wm + ∆w(t), (5)

with wm a constant representing the persistent component
of the disturbance, referred to as mid-range disturbance, and
∆w(t) a deviation from the mid-range, for which we assume
|∆w(t)| ≤ ∆max. The mid-range disturbance may be a
constant acceleration due, say, to an unknown ground slope;
whereas the deviation could account for a slowly varying
force, e.g., produced by the robot carrying a swinging load.

With this model of disturbance in mind, a robust version
of the IS-MPC scheme can be devised combining three
complementary approaches, see Fig. 1.

The first novelty is the disturbance observer block. This
is mainly designed for providing an estimate of the mid-
range disturbance wm. This estimate is then used to perform
an indirect compensation of these disturbances through a
modified stability constraint.

A second layer of robustness is added by means of the
ZMP constraint restriction. This consists in progressively
reducing the admissible region for the ZMP as time proceeds
in the control horizon, and offers robustness against the devi-
ation term ∆w(t), by guaranteeing that recursive feasibility
of QP-MPC is maintained up to the bound ∆max.

Finally, step timing adaptation is performed in the pres-
ence of impulsive perturbations that exceed the deviation
bound ∆max. If an imminent loss of feasibility is detected
for QP-MPC, the duration of the current step is modified so
as to recover feasibility.

The rest of this section will provide some detail about the
above three components.

A. Indirect disturbance compensation

For the perturbed LIP model (4), the stability condition (2)
must be modified as

xku = η

∫ ∞
tk

e−η(τ−tk)xz(τ)dτ − 1

η

∫ ∞
tk

e−η(τ−tk)w(τ)dτ.

(6)
Enforcing this condition implies indirect disturbance com-
pensation, but requires knowledge of the future evolution of
w(t). To maintain causality, we perform compensation of
the mid-range term wm, reconstructed through a disturbance
observer. In particular, we set up a simple linear observer
by extending the LIP with the disturbance model ẇm = 0
and assuming the availability of xc (CoM), xz (ZMP) as
measurements.

As in the nominal case, a causal stability constraint is
derived from condition (6) by conjecturing an anticipative
tail. In accordance with the idea of performing compensation
of the mid-range disturbance, we replace w(τ) in the second
integral with the current mid-range disturbance estimate ŵkm,



leading to the modified stability constraint

η

∫ tk+C

tk

e−η(τ−tk)xz(τ)dτ = xku +
ŵk

η2
− c̃kx.

More details can be found in [8].

B. ZMP constraint restriction

The deviation ∆w from the mid-range disturbance is not
taken into account in the modified stability constraint. To
achieve robustness with respect to this residual component
of the disturbance (as well as to the observation error), we
resort to ZMP constraint restriction as a way to guarantee
recursive feasibility under bounded disturbances.

Consider a restriction function R(t), defined as a non-
decreasing function over [0, Tc] such that

|R(t)| ≤ d/2,

with d the size of the ZMP constraint (1). The restricted
ZMP constraint for t ∈ (tk, tk+C ] is then expressed as

xmz (t,Xk
f ) +R(t) ≤ xz(t) ≤ xMz (t,Xk

f )−R(t). (7)

It is possible to show that a suitable restriction can be
computed such that IS-MPC with the restricted constraint (7)
remains recursively feasible in the presence of deviations up
to ∆max around the observed mid-range disturbance ŵk. For
example, we can adopt a linear restriction function R(t) =
rt, and derive an expression for r as a function of ∆max,
see [9] for details.

C. Feasibility-driven step timing adaptation

Fixed step timings are an obvious limitation, especially
when perturbations are present. Physical intuition suggests
that if the robot is pushed, anticipating or delaying the next
step can be beneficial for maintaining balance. However,
including step timings as decision variables in QP-MPC
leads to a problem that is either nonlinear or involves
discrete optimization, with considerable detriment in terms
of computational efficiency and convergence guarantees.

To maintain the linearity of our scheme, step timing
adaptation is performed prior to IS-MPC gait generation.
The step timings coming from the footstep planner are thus
regarded as candidates, and they will be definitive only after
adaptation.

The strategy upon which adaptation relies is based on the
feasibility region Fk of IS-MPC. In particular, IS-MPC is
feasible at tk if and only if (xku, y

k
u) ∈ Fk, where

Fk = {(xu, yu) : xk,mu ≤ xu ≤ xk,Mu , yk,mu ≤ yu ≤ yk,Mu }

where xk,mu , xk,Mu , yk,mu , yk,Mu denote the bounds of the
region along x and y, whose expressions are rather complex.
However, by encoding the duration of the current step as
∆λ = e−η(t1s−tk), where t1s is the time at which the
(single support of the) current step ends, we can obtain a
conservative estimate Fkest of the feasibility region which is
linear in ∆λ. We can then solve the following QP-STA


min
∆λ

(∆λ− ∆̂λ)2

subject to:
• feasibility constraints for xu and yu
• timing constraints

where ∆̂λ = e−η(t̂1s−tk) is the time-to-step (in exponential
encoding) according to the current candidate timing. The
feasibility constraints encode the requirement that QP-MPC
should be feasible after adaptation, while the timing con-
straint ensures that the adapted step timing can be physically
realized by the robot. Whenever adaptation is not necessary,
the solution of QP-STA will return the candidate step timing.

The step timing adaptation module is described in detail
in [10].

IV. RESULTS

We now present some simulation and experimental results
obtained using the robust IS-MPC framework. For compari-
son, for every scenario we provide also results obtained with
nominal IS-MPC.

Experiments were ran on a NAO, a small-sized humanoid.
In the first, shown in Fig. 2, the robot carries a bag of
mass of 0.67 Kg hanging from its right elbow. The observer
generates an estimate of the mid-range disturbance (which is
an acceleration towards the right due to the additional mass)
to be used in the modified stability constraint. This partial
disturbance compensation produces a slight displacement of
the CoM trajectory towards the left, as if ‘leaning’ against
an equivalent push coming from that direction to counter-
act its effect. Moreover, the ZMP constraint restriction is
used to provide robustness to the remaining part of the
disturbance, which is due to the oscillatory motion of the
bag and therefore time-varying. In this experiment, step
timing adaptation was never activated because no imminent
loss of feasibility loss was detected. Overall, the robust IS-
MPC scheme effectively copes with the disturbances by
maintaining balance and accurately realizing the planned
footsteps. For comparison, results using nominal IS-MPC are
also shown: the disturbance due to the swinging payload
negatively affects the gait, resulting in the a significant
deviation from the planned path and almost leading to a fall.

In the second scenario the humanoid is subject to an
impulsive push while walking forward; for this reason, only
the step timing adaptation module is active, while indirect
disturbance compensation and ZMP constraint restriction are
not used. To obtain a reproducible push, a 0.265 kg ball is
attached to a rope so to act as a pendulum that hits the robot.
In the experiment of Fig. 3, the push occurs during the single
support phase when the remaining time-to-step is 0.25 s.
Robust IS-MPC is able to maintain balance by immediately
reducing the time-to-step to 0.1 s. This is motivated by the
fact that as a shortening of the step duration has the effect
of enlarging the feasibility region in the x-direction. On the
contrary, nominal IS-MPC becomes unfeasible after the push,
leading the robot to a loss of balance.

To prove the applicability of the proposed method to
different platforms, we present, in the DART environment, a



Fig. 2. NAO walks carrying a swinging bag: robust IS-MPC (top),
nominal IS-MPC (bottom). With robust IS-MPC, compensation of the mid-
range disturbance produces a slight leaning action against the disturbance,
while ZMP constraint restriction provides robustness to the time-varying
components of w. On the contrary, nominal IS-MPC struggles to maintain
balance and visibly deviates from a straight line path.

Fig. 3. NAO is hit by a ball while walking: robust IS-MPC (top), nominal
IS-MPC (bottom). Thanks to the step adaptation module, IS-MPC is able to
preserve feasibility by reducing the step duration, while nominal IS-MPC
fails causing the robot to fall.

dynamic simulation for HRP-4, a full-sized humanoid robot.
The robot must walk under a constant push of 45 N along the
sagittal direction; at some point, an impulsive push of 85 N
is added in the coronal direction for 0.1 s. As the results of
Fig. 4 clearly show, robust IS-MPC effectively tolerates these
disturbances. The persistent component of the disturbance is
in fact estimated by the observer and compensated via the
modified stability constraint, working together with the ZMP
constraint restriction. The step timing adaptation module
only changes step timing immediately after the impulsive
push. Once again, the nominal scheme fails causing the robot
to fall.

V. CONCLUSIONS

This paper presents an MPC-based scheme for robust
humanoid gait generation. It is based on the IS-MPC scheme
and it relies on three different modules which can operate
simultaneously or independently. The proposed approach is
general enough to work on different humanoid platforms
such as NAO and HRP-4, allowing them to walk in the
presence of disturbances of different nature. The framework
is validated through dynamic simulations and experiments.

Fig. 4. HRP-4 walking under multiple pushes: robust IS-MPC (top), nom-
inal IS-MPC (bottom). The robot is walking under a constant disturbance in
the x direction and an impulsive disturbance in the y direction. Robust IS-
MPC is able to successfully withstand the disturbances, while the nominal
scheme fails.
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