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Abstract We present a method for odometric localiza-

tion of humanoid robots using standard sensing equip-

ment, i.e., a monocular camera, an Inertial Measure-

ment Unit (IMU), joint encoders and foot pressure sen-

sors. Data from all these sources are integrated us-

ing the prediction-correction paradigm of the Extended

Kalman Filter. Position and orientation of the torso, de-

fined as the representative body of the robot, are pre-

dicted through kinematic computations based on joint

encoder readings; an asynchronous mechanism triggered

by the pressure sensors is used to update the placement

of the support foot. The correction step of the filter uses

as measurements the torso orientation, provided by the

IMU, and the head pose, reconstructed by a VSLAM

algorithm. The proposed method is validated on the

humanoid NAO through two sets of experiments: open-
loop motions aimed at assessing the accuracy of local-

ization with respect to a ground truth, and closed-loop

motions where the humanoid pose estimates are used

in real-time as feedback signals for trajectory control.

Keywords Humanoid robots, localization, odometry,

visual SLAM, EKF

1 Introduction

In mobile robotics, maintaining an accurate estimate

of the robot placement in the world is a basic prerequi-

site for autonomy. For a humanoid robot, this amounts

to reconstructing the pose (position and orientation) of
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one of its bodies (e.g., the torso) with respect to a fixed

reference frame. Once this information is available, it is

possible to localize any other point on the robot using

kinematic computations based on joint encoder read-

ings.

Methods for humanoid localization can be roughly

classified in three main categories: (i) odometric local-

ization (ii) localization over an a priori known map (iii)

Simultaneous Localization and Mapping (SLAM).

The basic principle of odometric localization is to

use some form of velocity measurement to keep track

of the robot displacement (relative to the starting lo-

cation) by numerical integration of the motion model.

This is often acceptable for short-range operation of

wheeled mobile robots, in which velocity may be de-

termined from proprioceptive sensors such as wheel en-

coders (dead reckoning or pure odometry). However, pure

odometry is very imprecise for humanoid robots, due to

the presence of many sources of uncertainty and inaccu-

racy in motion execution, such as foot slippage, impacts

with the ground, and so on.

Pure odometry integrating encoder and inertial data

is used by Chestnutt et al. (2009) to merge successive

3D laser scans and reconstruct local maps of the en-

vironment around a humanoid robot; older scans are

progressively deleted to reduce the discrepancy effect

between local maps due to build-up over time of the

pose estimation error.

Effective odometric localization methods usually rely

on visual information. In particular, Visual Odometry

(VO) is a technique for reconstructing camera displace-

ments by tracking the apparent motion of visual fea-

tures (Scaramuzza and Fraundorfer, 2011). VO has been

used to reconstruct the pose of cameras mounted on

humanoid robots by Takaoka et al. (2004) and Ozawa

et al. (2005). A VO algorithm with improved robust-
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ness to motion blur due to walking has been proposed

by Pretto et al. (2009).

Another odometric localization approach based on

vision relies on a comparison between the current cam-

era image and a set of images stored in advance, e.g.,

see the work by Ido et al. (2009). This technique is dif-

ferent from VO, in that it requires previous information

about the environment.

Methods for humanoid localization that need an a

priori known map of the environment have been pro-

posed by Thompson et al. (2006) and Hornung et al.

(2010). In these works, measurements from a laser range

finder are integrated with odometric data reconstructed

from proprioceptive sensors. Visual information from a

monocular camera is instead used by Alcantarilla et al.

(2013) for localization in a 3D map of the environment.

Among SLAM-based techniques for localization of

humanoid robots, we mention the work by Tellez et al.

(2008), that makes use of odometric data as well as

measurements from laser range finders mounted on the

robot feet. Another popular approach is Visual SLAM

(VSLAM): for example, Davison et al. (2007) combine a

monocular VSLAM algorithm (Davison, 2003) with in-

ertial motion reconstruction using an Extended Kalman

Filter (EKF). Stasse et al. (2006) use the same VSLAM

module considering the reference motion provided by

the walking pattern generator as measurements to be

fed into the EKF. Other localization methods based

on VSLAM use a particle filter based on stereo visual

data (Kwak et al., 2009) or integrate a priori knowledge

and inertial measurements (Hernandez et al., 2011). In

a related method, Ahn et al. (2012) use encoder and

inertial data to improve the mobility model within a

VSLAM module running on a humanoid.

The method we present in this paper may be clas-

sified as odometric localization, because it maintains

an estimate of the humanoid pose without requiring or

building a map of the environment. This is achieved

using measurements from sensors that are found in the

standard equipment of most humanoid robots, i.e., joint

encoders, foot pressure sensors, a monocular camera

in the head, and an Inertial Measurement Unit (IMU)

on the torso. In particular, visual information coming

from the camera is fed to a vision-based pose estima-

tion algorithm acting as an enhanced sensor and sup-

plying a measurement of the head pose. For this, we

use a monocular VSLAM rather than a VO algorithm

in view of its higher accuracy, obtained at the cost of an

increased computational load which however does not

preclude a real-time implementation.

The structure of our algorithm is that of an EKF, in

which a pose prediction is computed using the differen-

tial kinematics from the support foot to the torso and

the relevant joint encoder readings. For the correction,

we use as measurements the head pose coming from the

VSLAM algorithm and the torso orientation provided

by the IMU. The filter is made aware of the current

placement of the support foot by an asynchronous up-

date mechanism triggered by the foot pressure sensors.

The main features of the proposed method are:

– no a priori map of the environment is needed;

– rather than considering a generic motion model, we

make explicit use of the humanoid kinematics;

– the hybrid (partly continuous-time, partly discrete-

time) nature of the walking gait is directly accounted

for in the prediction step;

– integration of kinematic data (joint encoders and

pressure sensors measurements) with visual infor-

mation provides robustness with respect to unmod-

eled effects, such as temporary loss of image features

or blur due to sway motion and impacts;

– use of the EKF framework results in a localization

system that is amenable to on-board implementa-

tion thanks to its light computational load;

– humanoid pose estimates are generated at a high

rate, making possible their use as feedback informa-

tion in a control loop.

With respect to the paper (Oriolo et al., 2012) where

this approach was first introduced, the present work

adds many technical details on the method and its im-

plementation, as well as an extensive experimental study.

In particular, we shall present two sets of experiments.

In the first set, humanoid pose estimates computed

by our localization system will be compared with the

ground truth in a series of open-loop motion trials. In

the second set, pose estimates are used in real-time to

close the loop in a trajectory control scheme, in order

to prove that the proposed localization module can be

effectively used for higher-level tasks.

The paper is organized as follows. Section 2 is used

to define the relevant quantities and to formulate our

odometric localization problem. Section 3 provides a

description of the proposed general method, while Sec-

tion 4 details its implementation on the small humanoid

robot NAO. The performance of the localization sys-

tem is then analyzed through several experiments in

both open-loop (Section 5) and closed-loop (Section 6)

motion trials. Section 7 concludes the paper.

2 Problem formulation

For a mobile robot, odometric localization consists in

maintaining a real-time estimate of the robot place-



Humanoid odometric localization integrating kinematic, inertial and visual information 3

Fh

Ft

Fw

Fh

Ft

p
t

h qn
p
t

ph

(a) (b)

Fig. 1 Relevant frames for humanoid localization: (a) Fw

(world), Ft (torso) and Fh (head); (b) enlarged view of the
kinematic chain from the torso to the head, with the associ-
ated neck joint variables qn.

ment in the world by keeping track of its relative dis-

placements, which are reconstructed from propriocep-

tive and/or exteroceptive sensor data. To formalize this

problem for a humanoid robot, we shall first discuss the

basic geometry and then define the sensory equipment

used by our localization system.

Figure 1 shows a schematic representation of the

robot kinematic structure together with the reference

frames of interest, i.e., the fixed world frame Fw and

the moving frames Ft and Fh, respectively attached

to the robot torso and head (Fig. 1a). Let pt, ot (ph,

oh) be the position and orientation of Ft (Fh) with re-

spect to Fw. The torso and head frames Ft and Fh are

kinematically related via the neck joints, whose config-

uration vector is qn (Fig. 1b).

Denote by Rt the rotation matrix from Fw to Ft

and by pth, Rt
h the position and orientation of Fh with

respect to Ft, and note that both pth and Rt
h are func-

tions of the neck joint angles qn. It is

ph = pt +Rt p
t
h (1)

oh = Ω(Rh) = Ω(RtR
t
h), (2)

where Ω(·) is a function that extracts from a rotation

matrix the corresponding orientation value in a minimal

representation, such as roll-pitch-yaw angles.

Kinematic computations play an important role in

our localization algorithm. During locomotion, these

computations hinge on the support foot, which repre-

sents the base of an open kinematic chain whose end-

point is the origin of Ft. Hence, a support frame Fs is

attached to the support foot. Accordingly, define the

support joints as those located between Fs and Ft (i.e,

the joints of the support leg and those of the pelvis),

and denote their configuration by qs. Upon completion

of each step, Fs jumps to a new placement, which is the

Ft Ft Ft

Fs Fs Fs

q
s

q
s

q
s

Fig. 2 During locomotion, the base of the kinematic chain
is the support foot. At each step completion, its representa-
tive frame is discontinuously moved to a new placement. The
identity of the support joints in qs is changed in accordance.

landing posture of the former swinging foot; the support

joints are also appropriately redefined (see Fig. 2).

Coming to sensory requirements, we shall assume

the availability of a monocular camera in the robot

head, an Inertial Measurement Unit on the torso, en-

coders at the joints and pressure sensors under the feet.

This is a rather standard equipment for a humanoid

platform. In our localization filter, encoders and pres-

sure sensors provide data for kinematic state prediction,

while camera and IMU are involved in the measurement

model. In particular:

– We assume that camera images are fed to an off-

the-shelf VSLAM algorithm which reconstructs the

position and orientation ph, oh of the head frame

Fh. The ensemble of camera and VSLAM algorithm

is considered as an intelligent visual sensor, which

is used as a black box.

– As for the IMU, only the measurement of the torso

orientation ot will be used, because velocity data are

typically very inaccurate or downright unavailable,

as in the NAO platform used for our experiments.

The localization problem can now be precisely for-

mulated as follows. Given initial estimates p̂t,0 and ôt,0
for the humanoid torso position and orientation, pro-

vide continuously updated estimates p̂t, ôt as the robot

moves, using measurements of ph, oh coming from the

camera+VSLAM sensor, measurements of ot yielded by

the IMU, joint readings from the encoders and signals

from the pressure sensors.

Once an estimate of the torso position and orienta-

tion is available, one may clearly reconstruct the cor-

responding information for any other part of the robot

body through direct kinematics.

3 The proposed method

The proposed method for odometric localization of hu-

manoid robots follows the typical prediction-correction
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Fig. 3 Block diagram representing the proposed filter for
odometric localization. Note that signals coming from pres-
sure sensors are used to trigger an asynchronous updating
mechanism which makes the filter aware of the current orien-
tation of the support foot.

structure of an Extended Kalman Filter. At each sam-

pling instant, a prediction of the torso position and

orientation is obtained using the differential kinematic

map from Fs to Ft and the encoder readings for the

support joints. A correction is then computed on the

basis of the difference between the expected values of

the outputs (head pose and torso orientation) and their

measurements coming from the camera+VSLAM sen-

sor and the IMU. Information about the current place-

ment of the support foot is provided to the filter by

an asynchronous updating mechanism triggered by the

signals from foot pressure sensors. Below, we describe

in detail the proposed algorithm.

Let x = (pt,ot) be the pose of the torso frame Ft,

i.e., its position and orientation with respect to the

world frame Fw. Our filter will take x as state to be

estimated. Denote by os the orientation of Fs with re-

spect to Fw, and by J(qs,os) the Jacobian matrix of

the kinematic map from the support frame Fs to Ft

(note that J does not depend on the position of Fs).

We adopt the following state-transition model for x:

ẋ = J(qs,os)q̇s. (3)

Equation (3) is a kinematic model, with the veloc-

ities q̇s of the support joints acting as control inputs.

There are essentially three reasons for not using a state-

transition model based on robot dynamics. First, the

full dynamic equations of humanoid platforms are of-

ten not available. Second, they are in any case very

complex, and their numerical integration would be too

time-consuming for real-time localization. Finally, the

appropriate control inputs for a dynamic model are the

joint torques, typically not accessible for measurements.

Note that the evolution of qs and os is not described

by the state-transition model (3). Indeed, in the pro-

posed filter the value of qs is simply read from joint

encoders, while os is asynchronously updated at the

completion of a step by appropriately processing the

output signals coming from the pressure sensors. See

the next section for a detailed description of such up-

dating mechanism in the case of a NAO humanoid.

The output model needed to derive the localization

filter expresses the measured variables y as a function

of the system state x. In particular, y includes the head

pose (ph,oh) and the torso orientation ot, respectively

provided by the camera+VLSAM sensor and the IMU.

Using eqs. (1–2) we obtain

y = h(x, qn) =

pt +Rt p
t
h

Ω(RtR
t
h)

ot

 . (4)

Note on the dependence of the output y on qn (the

configuration of the neck joints) through pth andRt
h. As

done for qs in the state-transition model (3), the value

of qn to be used in (4) is read from joint encoders.

Let T be the sampling interval of the filter, and use

the subscript k to indicate the value that a variable

assumes at time kT . The deterministic state-transition

model (3–4) translates to the discrete-time stochastic
system

xk+1 = xk + T J(qs,k,os)q̇s,k + vk (5)

yk = h(xk, qn,k) +wk, (6)

where vk, wk are zero-mean white gaussian noises with

covariance matrices V k ∈ R6×6, W k ∈ R9×9, respec-

tively. Note that os does not get the k subscript because

it is updated asynchronously.

We shall now provide explicit equations for our odo-

metric localization filter, whose functional structure is

illustrated in Fig. 3.

3.1 State prediction

At the time sample tk+1, a prediction x̂k+1|k is gener-

ated from the current estimate x̂k using eq. (5):

x̂k+1|k = x̂k + J(qs,k,os)∆qs,k,
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where the vector increment ∆qs,k = qs,k+1 − qs,k in

encoder readings is used to approximate the velocity

input term T q̇s,k.

From the structure of the discrete-time system (5),

the accompanying covariance prediction follows:

P k+1|k = P k + V k. (7)

3.2 Output prediction

The predicted output associated to the predicted state

x̂k+1|k is computed using (6):

ŷk+1|k = h(x̂k+1|k, qn,k+1).

The value qn,k+1 of the neck joint variables at time

tk+1 to be used in this computation is provided by the

corresponding joint encoders.

3.3 Correction

To correct the predicted state, we first compute the

innovation, i.e., the difference between the measured

and the predicted output:

νk+1 = yk+1 − ŷk+1|k.

The corrected state estimate is then defined as

x̂k+1 = x̂k+1|k +Gk+1νk+1,

where G ∈ R6×9 is the Kalman gain matrix

Gk+1 = P k+1|kH
T
k+1(Hk+1P k+1|kH

T
k+1 +W k+1)−1

with

Hk+1 =
∂h

∂x

∣∣∣∣
x=x̂k+1|k

.

The actual expression of Hk+1 will depend on the spe-

cific choice of the coordinates for representing orienta-

tion, that is embedded in the function Ω(·).
The corrected covariance estimate is

P k+1 = P k+1|k −Gk+1Hk+1P k+1|k.

3.4 Support foot update

Whenever the completion of a step is detected on the

basis of the foot pressure sensors, the support frame

Fs is instantaneously displaced to the new pose. As al-

ready noticed, the differential kinematic map (3) does

not depend on the position of Fs. Therefore, only its ori-

entation os is updated, using a forward kinematic com-

putation from Ft (now acting as a base frame placed

at its estimated pose) to Fs, and reading the value of

the new support joints from the corresponding encoders

(see Fig. 2).

4 Experimental setup

The proposed localization method has been validated

on the humanoid robot NAO developed by Aldebaran

robotics. This section describes the relevant robot hard-

ware, the ground truth system used to assess the local-

ization accuracy and the distinctive features of the filter

instance developed for the localization of NAO.

4.1 Robot hardware

Figure 4 reports a schematic of the robot structure with

the kinematic chains and the reference frames of inter-

est. NAO has 5 degrees of freedom in each leg, 1 in

the pelvis, and 2 in the neck; therefore, for the sup-

port and neck joints we have respectively qs ∈ R6 and

qn ∈ R2. The frame Fs is placed on the support foot,

aligned with the ankle articulation. The torso frame Ft

has been chosen as one of the three spatial references

used by the API methods of NAO, while the head frame

Fh has been placed on the top of the head, aligned with

the neck articulation.

The frame Fc has origin in the focus of the camera

that provides the information used by the VSLAM al-

gorithm embedded in the localization filter. This is a

CMOS digital camera with a diagonal FOV of 72.6◦.

By taking images with a resolution of 320× 240 pixels

it is possible to obtain a frame rate of 30 Hz, which is

the maximum frequency allowed for image acquisition.

The sensor suite necessary to implement the local-

ization method is completed by an IMU located in the

chest, the magnetic rotary encoders mounted on each

joint, and the Force Sensitive Resistors (FSRs) placed

under each foot. The IMU yields roll and pitch angles

measures relative to the torso frame Ft; hence, for the

output vector of Eq. (4) we have y ∈ R8, being the yaw

angle measurement not provided. The encoders provide

measures of the joint angles for all the kinematic com-

putations required by the filter with a resolution of 0.1◦.

The pressure measurements coming from the FSRs are

used to generate the switching signal for the support

foot update. Measures from IMU, encoders and FSRs

are updated at a nominal rate of 100 Hz.

4.2 Ground truth system

An external fixed camera has been used within a ground

truth system to asses the filter performance. In particu-

lar, using the algorithm in (Garrido-Jurado et al., 2014)

it is possible to obtain accurate estimates of the robot

head pose by tracking a known textured marker posi-

tioned on the robot head. The estimation error between
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Fig. 4 The humanoid robot NAO with the kinematic chains
and the reference frames involved in the localization process.

the ground truth and the odometric localization system

proposed in this work is derived by propagating the es-

timates of the torso pose provided by the odometric

filter up to the head frame.

4.3 Filter implementation

The VSLAM method for estimating the head pose cho-

sen in our implementation is the ready-to-use Paral-

lel Tracking and Mapping (PTAM) algorithm devel-

oped by Klein and Murray (2007) for augmented real-

ity applications. In particular, we have seamlessly inte-

grated in our framework the reference implementation

of PTAM available for free download1.

PTAM robustly tracks the pose of a hand-held monoc-

ular camera in unknown environments through the con-

struction of a dense map of 3D point features collected

from video frames. Real-time operation of the algorithm

is obtained through the parallel running of the tracking

and mapping processes. In the present work, PTAM is

used to estimate the pose of the camera frame Fc (see

Fig. 4). The head pose used by the filter is readily ob-

tained through a rigid transformation from Fc to Fh.

The maximum output frequency of PTAM is limited

by the camera frame rate (30 Hz). Thus, our kinematic

EKF runs at the same rate, although multiple predic-

tion steps are taken to exploit the higher rate of the

IMU and encoders readings (100 Hz).

In our current implementation, PTAM runs on an

external desktop computer to avoid overburdening the

robot CPU. Optimized, computationally lighter ver-

sions of PTAM suitable for on-board implementation

are available in the literature (Weiss et al., 2011) and

1 https://github.com/Oxford-PTAM/PTAM-GPL
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Fig. 5 Generation of the impulsive signal for the support
foot update from the FSRs measures.

can be easily integrated in our filter. The main reasons

for using the full version of PTAM in this work are:

(i) it is available as open-source software; (ii) we want

to compare the performance of purely visual estima-

tion with that achieved by fusion of visual, inertial and

kinematic data.

Finally, it is important to mention that, being based

on monocular vision, PTAM needs an initial guess of

the world metric scale since it cannot be recovered from

pure image measurements (Weiss and Siegwart, 2011).

Therefore, all our experiments include an initialization

procedure consisting in a translation of the robot head

by a known quantity so as to build a stereo pair from

two views of the same scene. Matching of the image

features detected on them allows PTAM to recover the

depth information and to lay the basis for the construc-

tion of its 3D visual map. The needed sideways transla-

tion of the camera is obtained in our experimental setup

by using a built-in NAO function allowing to command

a 3D motion of the head.
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A peculiar aspect of the filter instance proposed in

this work is the asynchronous update of the support

foot identity. This is triggered by a switching signal ob-

tained by processing the FSRs output. For illustration,

in Fig. 5 are plotted the relevant signals of this elab-

oration process relative to a six-steps walking motion

segment. The uppermost plot reports the FSRs signals

filtered from measurement noise.

The dashed horizontal lines indicate two threshold

values corresponding respectively to the inception of

a contact between the foot and the ground and the

beginning of a single support phase during which the

weight of the robot is completely supported by one of

the two feet, the other one being swinging.

The two thresholds are used to generate the contact

signals RC, for the right foot, and LC, for the left foot.

Specifically, when a filtered FSR signal raises above

the lower threshold the corresponding contact signal

switches to the high logical level if it is currently in the

low level. Complementarily, a FSR signal crossing first

the high and then the low level threshold in sequence

makes the corresponding contact signal switch to the

low logical level if it is currently in the high level state.

This switching logic introduces a kind of hysteresis in

the generation of the contact signals that filters the sig-

nal chattering around one of the two thresholds typical

of the initial phase of a change in the contact foot.

The impulsive signal that triggers the support foot

update is generated by the raising edge of either RC or

LC as illustrated by the last plot of Fig. 5.

It is worth noticing at this point that NAO APIs

provide functions for the detection of the support foot

change and for the kineatics-based odometric localiza-

tion of the robot. These functions could be used to

predict the robot state using the proposed framework.

However, the objective of this work was to develop and

implement a general method easily extendible to other

humanoids. In addition, since the technical details be-

hind these functions are not known, it would be not

possible to have full control on signal synchronization.

To complete the description of our implementation

of the proposed localization method, we mention that

all the results reported in the following sections have

been obtained by assigning to the covariance matrices

the following values:

V = diag{5, 5, 5, 100, 100, 100} · 10−6

W = diag{5, . . . , 5, 5 · 10−4, 5, 5} · 10−2,

with appropriate measurement units, i.e., meters for the

entries relative to the position and radians for those

related to the orientation.

These values have been found through an extensive

experimental study and reflect the quite high accuracy
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Fig. 6 First localization experiment: line. NAO odometry
and filter estimate vs ground truth.
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Fig. 7 First localization experiment: line. Norm of the head
position error with respect to the ground truth.

in the prediction of the torso pose based on encoders

measures, the uncertainties being introduced essentially

by the contact dynamics. A low value of the covariance

in W is associated to the measure of the head yaw an-

gle provided by PTAM for two reasons: (i) experiments

have demonstrated the reliability of PTAM in estimat-

ing this state variable, (ii) no exteroceptive sensor other

than the camera (through PTAM) provides measures

for the correction of the robot heading direction. These

matrices have been kept constant through the reported

experiments.

5 Direct validation via localization experiments

This section reports on a set of experiments aimed at as-

sessing the quality and reliability of the humanoid pose

estimation achievable through the proposed method.

The presented results have been obtained by filtering

the data collected during the execution of fundamental

locomotion tasks in different environmental conditions.

In particular, open-loop walking on flat floor2 along

a straight line and along a circle are first considered

2 In principle, our localization method can be used on ter-
rain with variable slopes. However, using the NAO built-in
locomotion functions, relying on the flat floor assumption, it
is only possible to allow very small variations in the slope
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Fig. 8 Second localization experiment: circle. NAO odome-
try and filter estimate vs ground truth.

as primitives of human-like locomotion on long dis-

tances (Mombaur et al., 2010; Truong et al., 2010). The

move function, available in the NAO software suite, al-

lows to specify the desired forward and angular speed of

a mobile frame with origin between the robot feet and

x-axis pointing forward along the robot sagittal plane.

To fully evaluate the accuracy of the method, no cal-

ibration procedure has been run to eliminate systematic

errors, though the methods in (Kelly, 2004; Hornung

et al., 2014) can be used to improve the prediction.

In the first experiment NAO is commanded to walk

straight. Figure 6 shows the top view of the robot head

cartesian motion. Data obtained from the robot built-

in odometry throughout the function getPosition are

plotted in black, while the path followed by the robot

as reconstructed by the ground truth system is shown

in red. The filter estimate is plotted in green.

A comparison of odometry and ground truth plots

shows the fast deviation of NAO from the commanded

path. The plot in green visually assesses the accuracy

of the filter in reconstructing the real robot motion.

A quantitative evaluation of the filter accuracy is, in-

stead, provided by the norm of the 3D cartesian er-

ror introduced by the proposed filter and by the NAO

odometry with respect to the ground truth reported in

Fig. 7. While the error of the built-in odometry module

diverges, the error associated to the filter estimates re-

mains limited. More specifically, the root mean square

of the filter absolute cartesian error is erms = 0.01873

m. Correspondingly, the root mean square of the built-

in odometry error is erms = 0.095358 m.

In the second experiment NAO is commanded to

walk counterclockwise along a circle. The top view of

that are not distinguishable from measurement noise. With
sufficiently high slope values the robot falls down.
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Fig. 9 Second localization experiment: circle. Camera posi-
tion provided by the VSLAM algorithm PTAM.

the robot head motion as reconstructed respectively

from the ground truth data, the robot built-in odome-

try and the presented filter is reported in Fig. 8. At the

start, the robot right foot is positioned at (0, 0).

Note how, although still accurate, the quality of lo-

calization deteriorates with that of the head pose esti-

mate provided by PTAM (compare with Fig. 9, around

the point (0.3, 0.7)). This loss of accuracy is essentially

due to a fluctuation in the number and quality of the

image features tracked by PTAM from frame to frame.

In particular, most of the features acquired during the

initialization phase go out of the camera FOV quite

early due to the change in NAO’s heading along the

circle. This forces PTAM to expand the map by adding

new features. The quality of the newly added features

is variable and heavily dependent on the environment.

The filter error is however recovered in the last part

of the circle when PTAM finds the image features of

the initial part of the map and can exploit the typical

SLAM loop closure.

The positive effect of the loop closure can be further

appreciated from the results of a third experiment in

which NAO travels two rounds along the same ideal cir-

cle. The reconstructed robot path is reported in Fig. 10

that confirms the reliability of the proposed filter and

in particular its ability to recover the estimation error

when a loop closure is possible. Figure 11 shows the

evolution of the norm of the cartesian error generated

by the filter and the built-in odometry error. The effect

of the loop closure is to maintain limited the filter er-

ror while the error associated to the built-in odometry

diverges through the rounds.

It is worth noting that, in our experimental setup

the heading angle correction is only due to PTAM since

the robot IMU does not provide this information. For
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Fig. 10 Third localization experiment: circle, two rounds.
Filter estimate vs ground truth.
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Fig. 11 Third localization experiment: circle, two rounds.
Norm of the head position error with respect to the ground
truth.

humanoids equipped with an IMU that provides the

complete robot attitude the filter estimate is expected

to be more robust to PTAM inaccuracies.

To further test the performance of the proposed lo-

calization method, we have run experiments exploiting

the omnidirectional motion capability of humanoids.

Figure 12 shows the top view of the robot head carte-

sian motion. Each segment of the walking motion cor-

respond to a fixed set of parameters in the function

setWalkTargetVelocity accepting as input the desired

displacement in the x and y direction, rotation of the

swinging foot with respect to the supporting one and

frequency of steps. Plot of the cartesian error in Fig. 13

shows that the accuracy remains within the bounds of

the previous experiments.

The last experiment of this section illustrates the

impact of a lack of measurement updates on the local-

ization accuracy. Measures may lack when PTAM is un-

able to extract any feature from an image because of a
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Fig. 12 Fourth localization experiment: omnidirectional
walk toward randomly varied directions. NAO odometry and
filter estimate vs ground truth.
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Fig. 13 Fourth localization experiment: omnidirectional
walk toward randomly varied directions. Norm of the head
position error with respect to the ground truth.

temporary occlusion. In the proposed experiment this

situation has been simulated by artificially occluding
the camera FOV for about 10 seconds. The cartesian

motion reconstructed through the filter and the ground

truth is shown in Fig. 14, while Fig. 15 reports the mea-

surements provided by PTAM. When the camera FOV

is occluded PTAM stops providing any output. This ob-

viously increases the error in the estimates provided by

the filter which is now based on the prediction only. In

practical applications, when pose estimates are needed

to perform a feedback control action, the proposed filter

still provides a useful signal. The use of a pure VSLAM

might instead lead to a lack of measurements, hence

preventing the computation of the control inputs.

6 Indirect validation via control experiments

This section reports on control experiments using as

feedback signal the state estimate provided by the pro-

posed filter. In particular, the presented results have

been obtained by applying the control and sway mo-
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Fig. 14 Fifth localization experiment: temporary camera oc-
clusion. Filter estimate vs ground truth.
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Fig. 15 Fifth localization experiment: temporary camera oc-
clusion. Camera position provided by PTAM.
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Fig. 16 Trajectory tracking: straight line. Filter estimate
and ground truth vs desired trajectory.

tion filtering techniques derived in (Oriolo et al., 2013)

for tracking workspace trajectories with the torso mo-

tion after cancellation of the sway oscillations.

The evolution of this controlled output is associ-

ated to a unicycle-like model which corresponds to a

natural locomotion behavior for long distance displace-

ments (Mombaur et al., 2010; Truong et al., 2010).

With this model, any trajectory tracking controller de-

signed for unicycle-like robots is suitable to drive the

humanoid along a specified path.

In the reported experiments we have used the track-

ing controller proposed in (Samson, 1993), which con-

sists of a nonlinear time-invariant controller. The driv-

ing and steering velocity commands issued from the

controller are sent to the robot using the NAO built-in

function move. The sway motion is canceled through

low-pass filtering, one of the two solution methods pro-

posed in (Oriolo et al., 2013). The trajectory controller

runs at 100 Hz, the same rate of the localization filter.

For the first experiment, the desired trajectory is a

straight line to be executed at the speed of 0.5 m/s. The

executed path is reported in Fig. 16 showing the top

view of the torso motion as reconstructed by the odo-

metric localization filter (in green) and by the ground

truth system (in red), and the reference trajectory (the

black line). The accuracy of the localization filter is, as
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Fig. 17 Trajectory tracking: straight line. Estimated torso
trajectory after sway motion cancellation (controlled output)
vs desired trajectory.
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Fig. 18 Trajectory tracking: circle. Estimated and ground
truth torso vs desired trajectory.

expected, the same of the open-loop experiments and

a qualitative comparison with Fig. 6 suggests that it is

suitable for use in the control loop.

A quantitative evaluation of the tracking accuracy

can be obtained from the evolution of the controlled

output, given by the estimated torso position after sway

motion cancellation, shown in Fig. 17 together with the

reference linear trajectory.

The transient error associated to the starting phase

of the walking motion is due both to the error in the

robot initial pose and to the foot slippage usually ac-

companying the first step of the walking motion. As

soon as the walking gait becomes regular, the control

action is more effective and the executed path converges

to the desired trajectory. Overall, the robot tracks the

desired trajectory with a root mean square of the track-

ing error erms = 0.0388 m.

The reference trajectory in the second experiment

is a circle to be traced at the linear speed of 0.018 m/s

and angular speed of 0.04 rad/s. Figure 18 allows to

compare the estimated, ground truth and desired torso
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Fig. 19 Trajectory tracking: circle. Estimated torso trajec-
tory after sway motion cancellation vs desired trajectory.

trajectory. The averaged (i.e., after sway motion can-

cellation) torso motion is shown in Fig. 19. The root

mean square of the tracking error for this experiment

is erms = 0.0488 m.

It is worth observing that, the residual tracking er-

ror is to be ascribed not only to the localization inaccu-

racy but also to the trajectory control algorithm which

is not robust with respect to the perturbation intro-

duced in considering an approximate model for con-

trol design and to NAO’s actuation errors. This error
can be reduced but not eliminated. We do not analyze

the controller robustness properties because trajectory

tracking is not the focus of the paper and the real local-

ization accuracy should be evaluated on the open-loop

experiments. The above reported experiments aim at

showing the real-time performance of the algorithm.

Movie clips illustrating both open-loop and control

experiments are included in the video accompanying

this paper.

7 Conclusions

We have presented a method for odometric localization

of humanoid robots that integrates kinematic, inertial

and visual information in an Extended Kalman Filter

framework. At each sampling instant, a pose for the

torso is predicted using the differential kinematic map

from the current support foot to the torso itself using

the joint encoders value. This prediction is then cor-

rected using the measurements from the camera (head

pose reconstructed through a VSLAM algorithm) and

the IMU (torso orientation). The support foot is up-

dated asynchronously at the detection of a step com-

pletion through the pressure sensors under the feet.

Open-loop locomotion trials with the small size hu-

manoid NAO have been used to directly assess the accu-

racy of the proposed localization method with respect

to a ground truth. Control experiments using the hu-

manoid pose estimates in real-time as feedback signals

for tracking a desired workspace trajectory have shown

that the localization module is suitable for use in an in-

tegrated control architecture for the execution of higher

level tasks.

Salient software components of our implementation

of the proposed filter is available for download3. We

designed the software to be as much as possible inde-

pendent from middleware frameworks like ROS or spe-

cific robot software libraries. Accordingly, we used NAO

APIs only to access sensor data and to map the velocity

commands to the robot walking engine.
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