Learning soft task priorities for safe control of humanoid robots with constrained stochastic optimization

Valerio Modugno^{1,2}, Ugo Chervet², Giuseppe Oriolo¹, Serena Ivaldi²

Abstract-Multi-task prioritized controllers are able to generate complex robot behaviors that concurrently satisfy several tasks and constraints. To perform, they often require a human expert to define the evolution of the task priorities in time. In a previous paper [1] we proposed a framework to automatically learn the task priorities thanks to a stochastic optimization algorithm (CMA-ES) maximizing the robot performance on a certain behavior. Here, we learn the task priorities that maximize the robot performance, ensuring that the optimized priorities lead to safe behaviors that never violate any of the robot and problem constraints. We compare three constrained variants of CMA-ES on several benchmarks, among which two are new robotics benchmarks of our design using the KUKA LWR. We retain (1+1)-CMA-ES with covariance constrained adaptation [2] as the best candidate to solve our problems, and we show its effectiveness on two whole-body experiments with the iCub humanoid robot.

I. Introduction

Fulfilling multiple operational tasks to achieve a complex behavior while satisfying constraints is one of the challenges of whole-body control of redundant manipulators and humanoid robots. For example, let us consider the humanoid iCub (Fig.1) that must fulfill a "global task" that is *reaching with the hands two goal positions behind a wall while avoiding collisions*. The global task can be decomposed as a combination of simpler elementary tasks (for example: control the end-effector, control the pose of a particular link, *etc.*) and constraints that guarantee a condition of feasibility over the generated motions (for example: torques and joints limit, collisions, external forces *etc.*).

More generally, elementary tasks can include tracking desired trajectories, regulating contact forces, controlling the center of mass for balancing etc. Constraints range from mechanical limitations (e.g., joint and torque limits) to safety (e.g.,collision avoidance, limiting the exchange of mechanical forces with the environment) and balance keeping for floating base platforms.

In the literature, this constrained control problem is usually solved with prioritized controllers, where a set of operational tasks are organized according to strict priorities in a hierarchy or "stack" [3], [4], or combined with weighting functions, also called soft task priorities [5], [6]. Constraints are either formulated as high-priority tasks or taken into account by

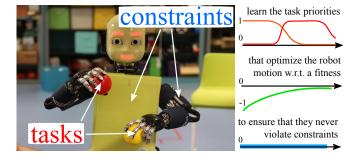


Fig. 1. The humanoid robot iCub performing a bimanual task with several tasks and constraints. In this paper we optimize the task priorities guaranteeing that the global robot behavior is safe: it never violates any of the constraints.

quadratic programming solvers. The task priorities and their evolution in time are usually defined a priori and frequently manually tuned by experts.

A new line of research is now focused on the automatic optimization of task priorities [1], [7], [8], [9]. Most of these approaches are based on an iterative policy learning technique that needs many repetitions (rollouts) of the same experiment to find a viable solution. These frameworks poorly address the problem of constraints satisfaction when optimizing the task priorities. For example, in [7] torques are saturated for safety, and joint and velocity limits are introduced as tasks. However, satisfaction of constraints formulated as tasks cannot be ensured, especially in the case of soft tasks prioritization. In [8] the balance constraint is added as an objective to the fitness function, but this is a relaxation of the constraint that does not ensure its satisfaction either. In [1] we used the Covariance Matrix Adaptation-Evolutionary Strategy (CMA-ES) [10], a derivative free stochastic optimization method that solves nonlinear non-differentiable optimization problems, with death penalties to enforce constraint satisfaction on the solutions. This choice was not efficient in terms of search of the optimum solution, as the exploration could easily get stuck in a constrained region where the fitness landscape was turned into a plateau. Furthermore, many solutions had to be dropped because of constraints violation.

Ensuring that the optimization process yields a safe solution - where safety means not violating any constraints - becomes mandatory if we want to successfully apply these solutions to a real robot [11].

To approach the safety issue, in this paper we investigate *constrained* stochastic optimization algorithms, and we focus on three variants of CMA-ES: one with *vanilla* constraints,

^{*}This paper was supported by the FP7 EU projects CoDyCo (No. 600716 ICT 2011.2.1 Cognitive Systems and Robotics).

¹ Dipartimento di Ingegneria Informatica, Automatica e Gestionale, Sapienza Universita di Roma, via Ariosto 25, 00185 Roma, Italy. modugno@diag.uniromal.it

² Inria, Villers-lès-Nancy, F-54600, France; CNRS, Loria, UMR n.7503 and Université de Lorraine, Loria, UMR n.7503, Vandoeuvre-lès-Nancy, F-54500, France. serena.ivaldi@inria.fr

one with adaptive constraints [12] and the (1+1)-CMA-ES with covariance constrained adaptation [2]. We compare these methods with a baseline constrained optimization algorithm, that is the *fmincon* function in Matlab. To compare the algorithms, we explicitly look for methods that can find good solutions while ensuring zero constraint violations within a reasonable computational time.

There exist standard benchmarks for constrained optimization, consisting in analytic problems with several variables and constraints and known optimal solutions. For example Arnold & Hansen [2] tested (1+1)-CMA-ES on seven different problems with a number of variables ranging from 2 to 10, and a number of constraints between 1 to 9. However, in robotics the number of constraints usually grows with the number of degrees of freedom of the robot: for example, with a 7-DOF robot, the joint position range (7×2) and the torque limits (7×2) already introduce 28 constraints. In humanoids and highly articulated systems, the number of DOF is higher (e.g., 32 DOF for the iCub) and so the number of constraints. Furthermore, the number of tasks increases with the complexity of the action, especially for bimanual or whole-body movements. It is therefore necessary to design new benchmarks tailored for robotics applications to make a pondered decision about the algorithm that is most suited to solve our problem ensuring that the constraints are never violated.

The contribution of this paper is twofold: first, we compare the performance of three constrained variants of CMA-ES with *fmincon* on analytic and robotic benchmarks, the latter (RB1,RB2) being new and designed *ad hoc*; second, we extend the framework for learning task priorities, that we proposed in [1], to ensure that the optimized priorities lead to safe behaviours that never violate the constraints. We show the effectiveness of our approach by generating optimized safe (zero constraints violations) whole-body movements on the humanoid robot iCub.

The paper is organized as follows: Section II outlines the framework for learning task priorities for controlling redundant robots; Section III describes the constrained optimization algorithms retained for the study; Section IV and V illustrate respectively the benchmarks comparison and the experiments with the iCub humanoid robot.

II. MULTITASK CONTROLLER WITH LEARNT PRIORITIES

Our method aims at automatically learning the task priorities (or task weight functions) to maximize the robot performance ensuring that the optimized priorities lead to behaviours that always satisfy the constraints. The global robot movement is evaluated by a fitness function ϕ that is used as a measure of the ability of the robot to fulfill its mission without violating the constraints. Our proposed method outlined in Fig. 2 extends the framework that was introduced in [1]. In this section we recall the multi-tasks controller and the structure of the parametrized task weight functions α_i , while the optimization procedure is described in Section III, where we analyze some recent extensions of the basic CMA-ES method to deal with constraints.

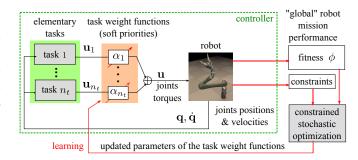


Fig. 2. Overview of the proposed method. The controller consists of a weighted combination of elementary tasks, where the weight functions represent the soft task priorities. An outer learning loop enables the optimization of the task weights parameters, taking into account the constraints violations in an explicit way.

A. Controller for a single elementary task

In the following, we briefly describe the torque controller for the *i*-th elementary task, which is presented in more detail in [1]. Following our previous work, we use a regularized closed-form solution of a controller derived from the Unified Framework (UF) [13]. Let us consider the rigid-body dynamics of a robot with *n* DOF, *i.e.*:

$$\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{f}(\mathbf{q}, \dot{\mathbf{q}}) = \mathbf{u}_i(\mathbf{q}, \dot{\mathbf{q}})$$

where $\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}} \in \mathbb{R}^n$ are, respectively, the joints positions, velocities and accelerations, $\mathbf{M}(\mathbf{q}) \in \mathbb{R}^{n \times n}$ is the generalized inertia matrix, $\mathbf{f}(\mathbf{q}, \dot{\mathbf{q}}) \in \mathbb{R}^n$ accounts for Coriolis, centrifugal and gravitational forces and $\mathbf{u}_i(\mathbf{q}, \dot{\mathbf{q}}) \in \mathbb{R}^n$ is the vector of the commanded torques of the i-th task. Following the UF formulation, the general torque controller is $\mathbf{u}_i = \mathbf{N}_i^{-\frac{1}{2}} (\mathbf{A}_i \mathbf{M}^{-1} \mathbf{N}_i^{-\frac{1}{2}})^{\dagger} (\mathbf{b}_i + \mathbf{A}_i \mathbf{M}^{-1} \mathbf{f})$, where: the matrix $\mathbf{A}_i (\mathbf{q}, \dot{\mathbf{q}}, t) \in \mathbb{R}^{m \times n}$ and the vector $\mathbf{b}_i (\mathbf{q}, \dot{\mathbf{q}}, t) \in \mathbb{R}^{m \times 1}$ incorporate the information about the *m*-dimensional task; N_i is a weighting matrix that can be changed to achieve different control strategies; $(\cdot)^{\dagger}$ is the Moore-Penrose pseudoinverse; the upper script in $N_i^{-1/2}$ denotes the inverse of the matrix square root. Controllers derived from UF are sensitive to kinematic singularities, due to the matrix inversion [14]. To overcome this problem, we reformulate the UF controller in a regularized fashion, as classically done at the kinematic level, for instance in [15]. The resulting closed form solution of the controller for a single elementary task is then: $\mathbf{u}_i = \mathbf{N}_i^{-1} \tilde{\mathbf{M}}_i^{\top} (\mathbf{I} \lambda_i^{-1} + \tilde{\mathbf{M}}_i \mathbf{N}_i^{-1} \tilde{\mathbf{M}}_i^{\top})^{-1} (\mathbf{b}_i + \tilde{\mathbf{M}}_i \mathbf{f})$, with $\tilde{\mathbf{M}}_i = \mathbf{A}_i \mathbf{M}^{-1}$, and λ_i is a regularizing factor (we refer to [1] for a more accurate description of the regularization problem leading to this closed-form solution).

B. Controller for multiple elementary tasks with soft task priorities

Each elementary task is modulated by a task priority or task weight function $\alpha_i(t)$. To find automatically the optimal n_t task priorities $\{\alpha_i(t)\}_{i=1,\dots,n_t}$, we transform the functional optimization problem into a numerical optimization problem by representing the task priorities with parametrized functional approximators $\alpha_i(t) \to \hat{\alpha}_i(\hat{\boldsymbol{x}}_i,t)$, where $\hat{\boldsymbol{x}}_i$ is the set of parameters that shape the temporal profile of the i-th task

weight function. With reference to the scheme of Fig. 2, given n_t elementary tasks the final controller is given by:

$$\mathbf{u}(\mathbf{q}, \dot{\mathbf{q}}, t) = \sum_{i=1}^{n_t} \hat{\alpha}_i(\hat{\boldsymbol{\pi}}_i, t) \mathbf{u}_i(\mathbf{q}, \dot{\mathbf{q}}) . \tag{1}$$

C. Learning the task priorities

We model the task priorities by a weighted sum of normalized Radial Basis Functions (RBF):

$$\hat{\alpha}_{i}(\hat{\boldsymbol{\pi}}_{i},t) = S\left(\frac{\sum_{k=1}^{n_{r}}\hat{\pi}_{ik}\psi_{k}(\mu_{k},\sigma_{k},t)}{\sum_{k=1}^{n_{r}}\psi_{k}(\mu_{k},\sigma_{k},t)}\right),\tag{2}$$

where $\psi_k(\mu_k, \sigma_k, t) = \exp\left(-1/2[(t-\mu_k)/\sigma_k]^2\right)$, with fixed mean μ_k and variance σ_k of the basis functions, n_r is the number of RBFs and $\hat{\boldsymbol{\pi}}_i = (\hat{\pi}_{i1}, \dots, \hat{\pi}_{in_r}) \subseteq \mathbb{R}^{n_P}$ is the set of parameters of each task priority. $S(\cdot)$ is a sigmoid function that squashes the output to the range [0,1]. The elementary task is fully activated when the task priority is equal to 1, otherwise the control action fades out until a full deactivation when the priority goes to 0. The free parameters $\hat{\boldsymbol{\pi}}_i$ of each task weight function (Eq. 2) constitute the current parameters set to optimize: $\boldsymbol{\pi} = (\hat{\boldsymbol{\pi}}_1, \dots, \hat{\boldsymbol{\pi}}_{n_t})$.

To optimize the free parameters π , we introduce two elements, namely the fitness function ϕ and the set of inequality and equality constraints g,h:

- the fitness function $\phi = \phi(\mathbf{q}_{t=1,\dots,T}, \mathbf{u}_{t=1,\dots,T}, t)$, computes a performance measure of the global task executed by the robot over T time steps with the current parameters π . The fitness function can contain different criteria ranging from energy consumption arguments to specific properties of the desired trajectories (e.g., speed, smoothness).
- the constraints g,h determine the admissible controls to be applied to the robot. They can be dependent on the robot structure (e.g., maximum joint torques, joint ranges), on the environment (e.g., obstacles, collisions), on the tasks (e.g., safety limits, couplings), etc.

The objective of the next section is to formalize the problem of optimizing the parameters π that maximize the fitness ϕ , ensuring that the constraints g,h are satisfied.

III. CONSTRAINED BLACK-BOX OPTIMIZATION OF TASK PARAMETERS

Learning the parameters $\pi \in \Pi \subseteq \mathbb{R}^{n_P}$ is a constrained optimization problem, as we need to find the optimal parameters π° that maximize the objective function $J(\pi): \mathbb{R}^{n_P} \to \mathbb{R}$ (by default, equivalent to the fitness ϕ):

$$\boldsymbol{\pi}^{\circ} = \arg \max_{\boldsymbol{\pi}} J(\boldsymbol{\pi})$$

under the inequality and equality constraints g, h:

$$g_i(\boldsymbol{\pi}) \leq 0, i = 1, \dots, n_{IC}; \quad h_i(\boldsymbol{\pi}) = 0, j = 1, \dots, n_{EC}$$

Following our approach in [1], we do not constrain the fitness structure nor its differentiability properties, hence we keep solving the problem with derivative-free methods. In [1] we used CMA-ES [10], for the known advantage of requiring few parameters to tune. To find feasible solutions that satisfied the constraints, we adopted a death penalty approach. That choice was clearly not efficient, as the constant

penalty applied to the fitness has a pathological effect on the exploration of the algorithm, possibly causing the search to get stuck in infeasible regions.

In this paper, we adopt a different strategy and look explicitly for variants of CMA-ES that take into account the constraints in the exploration procedure. Our goals are: 1) to improve the efficiency of the optimization procedure exploiting the constraint information, and 2) to guarantee that every solution found by the stochastic optimization process lies in a region of the parameter space that satisfies all the constraints. Interestingly, we are not interested in algorithms that permit constraints relaxation (hence violation) to find a solution: this is typically the case of real-time quadratic solvers (e.g., quadprog, qpOASES).

Among the multitude of constrained black-box optimization algorithms, we focused on three variants of CMA-ES: a vanilla penalty CMA-ES, the CMA-ES with Adaptive Penalty approach proposed in [12] and the (1+1)-CMA-ES with Covariance constrained Adaptation proposed in [2]. The first is a baseline CMA-ES that applies to the fitness a penalty that is proportional to the constraint violation. The second method is similar in principle, but the penalty weights are changed depending on the constraint violation following a heuristic. The third does not rely on penalties but updates the covariance whenever a constraint is violated, to drive the exploration away from infeasible regions.

In the rest of this section, we outline the three methods explaining their differences with respect to CMA-ES. In the presentation, we will use the following symbols:

- $J(\cdot)$ objective function
- n_{IC} number of inequality constraints $g_i(\cdot)$
- n_{EC} number of equality constraints $h_i(\cdot)$
- $n_C = n_{IC} + n_{EC}$ total number of constraints
- $\Pi \subseteq \mathbb{R}^{n_P}$ parameter space
- $\pi_k \in \Pi$ k-th candidate at the current generation
- K total number of candidates for each generation
- Ke number of best candidates or elites
- $\pi_{1:K_{e}}$ best candidates of the current generation
- $\mathcal{N}(\bar{\pi}, \Sigma)$ Gaussian distribution with $\bar{\pi}$ mean and Σ covariance
- σ^2 step size
- $l(\boldsymbol{\pi}_k)$ penalty factor
- $\hat{J}(\boldsymbol{\pi}_k) = J(\boldsymbol{\pi}_k) + l(\boldsymbol{\pi}_k)$ penalized objective function

A. Stochastic optimization with CMA-ES (no constraints)

A single iteration (called *generation*) of CMA-ES [10] consists of several steps. A set of K samples π_k is drawn from a multivariate Gaussian distribution $\mathcal{N}(\bar{\pi}, \sigma^2 \Sigma)$ with a σ^2 step size; for each sample π_k we perform the evaluation of the objective function J, called *fitness*. The samples are sorted using a ranking procedure based on the fitness and an update of the Gaussian distribution is performed according to the best K_e candidates $\pi_{1:K_e}$ called *elites*.

The update step affects mean, covariance and step size of the search distribution $\mathcal{N}(\bar{\pi}, \sigma^2 \Sigma)$. The evolution of the mean is influenced by the probability weights P_k of each elite candidate. A common choice is $P_k = \ln(0.5(K_e + 1)) - \ln(k)$.

Fig. 3. Pseudo-code for the basic CMA-ES without constraints.

In CMA-ES, premature convergence is avoided by tuning the step size σ^2 . Both σ^2 and Σ are updated by combining the information from the last generation and all the previous ones. For the update of the stepsize σ^2 and more detail about the algorithm, we refer the reader to [10]. To initialize CMA-ES the user has to specify the exploration rate, a scalar value between [0,1] that controls the starting value of the covariance matrix. Fig. 3 shows the pseudo-code of the algorithm.

B. CMA-ES with Vanilla Constraints

The *vanilla penalty* functions method consists in adding to the fitness of a candidate a penalty term that depends on the constraints violation of the candidate. The method employs a penalized objective function $\hat{J}(\boldsymbol{\pi}_k) = J(\boldsymbol{\pi}_k) + l(\boldsymbol{\pi}_k)$ with the penalty factor $l(\boldsymbol{\pi}_k)$ defined as:

$$l(\boldsymbol{\pi}_k) = \sum_{i=1}^{n_{IC}} r_i \max(0, g_i(\boldsymbol{\pi}_k))^2 + \sum_{j=1}^{n_{EC}} c_j |h_j(\boldsymbol{\pi}_k)|$$

where r_i and c_i are positive constant values. In Fig. 4 we give a pseudo-code for this variant where we refer to the penalization routine with PENALTY(·).

C. CMA-ES with Adaptive Constraints

The previous method is by far the simplest and the most intuitive, as it applies a penalty that depends on the candidate π_k . However, one may want to make the penalty term variable, for example depending on the exploration path.

Collange et al. [12] proposed a penalty function approach where a set of adaptive weights are tuned to prevent the search process to get stuck in a local minima of the penalized fitness function $\hat{J}(\cdot)$. A penalized objective function $\hat{J}(\boldsymbol{\pi}_k)$ is therefore used. The key idea is that the penalty factor $l(\boldsymbol{\pi}_k)$ is built so as to consider the number of feasible solutions per each generation and the activation of each constraint, determined by a heuristic tuned by a user-defined ε_i . In particular, one sets $l(\boldsymbol{\pi}_k) = \sum_{i=1}^{n_C} w_i [\gamma_i^+(\boldsymbol{\pi}_k)]^2$, where w_i , $i=1,\ldots,n_C$ is the set of adaptive weights, and $\gamma_i^+(\cdot)$ is the positive part of the so-called ε -normalized constraint values γ_i , which are used to identify the active constraints. The ε -normalized constraint values γ_i are defined as:

$$\gamma_i = \begin{cases} [g_i(\boldsymbol{\pi}_k) + \varepsilon_i]/\varepsilon_i & \text{for inequality constraints} \\ |h_i(\boldsymbol{\pi}_k)|/\varepsilon_i & \text{for equality constraints} \end{cases} . (3)$$

The user can tune the definition of the constraints violations and the relaxation of the constraints through the parameters $\varepsilon_i > 0, i = 1, \dots, n_C$. For equality constraints $h_i(\cdot)$, a candidate solution π_k is labelled "feasible" if $0 \le \gamma_i \le 1$, "infeasible" otherwise. For inequality constraints $g_i(\cdot)$, a candidate solution π_k is labelled "feasible" if $\gamma_i \le 1$, "infeasible" otherwise (see Fig. 5).

The weights update is driven by the ratio of feasible solutions for all the constraints. Define

$$r_i^{feas} = \frac{\text{\# feasible solutions for the } i\text{-th constraint in the curr. generation}}{K}$$

$$\bar{r}_i^{feas} = \text{average of } r_i^{feas} \text{ over the last } n_P + 2 \text{ generation}$$

If all the samples π_k with $k=1,\ldots,K$ satisfy the i-th constraint, then $r_i^{feas}=1$; otherwise $r_i^{feas}<1$. So $\bar{r}_i^{feas}=1$ only when all the samples satisfy the i-th constraint for n_P+2 generations. Once this condition is met the weight w_i related to the i-th constraint is decreased almost surely (in a statistical sense). The adaptation rule for the weight w_i after each generation is defined as: $w_i=w_i\exp(p_{target}-r_i^{feas})$, where p_{target} is a value that changes at each iteration according to $p_{target}=(1/Kn_P)^{1/\mathcal{D}}$, where \mathcal{D} represents the cardinality of the elements' set that satisfies $i=1,\ldots,n_C:\bar{r}_i^{feas}<1$ and K is the number of samples. As a rule of thumb, when $r_i^{feas}>p_{target}$ the weight w_i decreases, otherwise it increases. In Fig. 4 we give a pseudo-code for this variant, where we refer to the weight computation routine with UPDATEWEIGHT(·). For more detail on the method we refer to [12].

This method is more interesting as the penalty factor applied to the objective function changes during the optimization process depending on the number of feasible solutions that do not violate the constraints, considering the relaxation acting on the equality constraints. With respect to the vanilla method, here the penalty factor is not constant over the parameter space, and depends on the exploration path in the parameter space. This decreases the possibility of getting stuck in local minima or flat areas of the fitness.

D. (1+1)-CMA-ES with Covariance Constrained Adaptation

The third method, proposed by Arnold et al. [2], is an extension of (1+1)-CMA-ES with active covariance adaptation [16]. Differently from the other two methods, here we do not have a penalty factor, i.e., the objective function is unchanged, but there is a different exploration strategy that exploits the constraints information to change the covariance and keep the optimization in a feasible region.

A notable difference with the classical CMA-ES is the fact that there is only one sample per generation (π_1 , therefore K = 1), that is generated according to the following rule:

$$\boldsymbol{\pi}_1 = \boldsymbol{\pi} + \sigma \mathbf{D} \mathbf{z} \tag{4}$$

where **D**, defined as $\mathbf{\Sigma} = \mathbf{D}^T \mathbf{D}$, is the Cholesky factor of the covariance matrix $\mathbf{\Sigma}$ and \mathbf{z} is a standard normal distributed vector $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. The algorithm stores the information about the successful steps in a so-called *search path* $\mathbf{s} \in \mathbb{R}^{n_p}$.

```
CMA-ES with vanilla constraints
function CMA-ES
        for each gen = 1, ..., n_{GENERATIONS} do
                for k = 1, \dots, K do
                        {m \pi}_k \sim \mathcal{N}({m \pi}, {m \sigma}^2 {m \Sigma})
                for k = 1, \dots, K do
                         J_k = J(\boldsymbol{\pi}_k)
                        if Constrviolation(\pi_k) then
                                 \hat{J}_k = \text{Penalty}(\boldsymbol{\pi}_k, J_k)
                end for
               The sum of \pi_{1:K_e} = \operatorname{SORT}(\boldsymbol{\pi}_{k=1:K}, \hat{J}_{k=1:K})
\boldsymbol{\pi}^{new} = \sum_{k=1}^{K_e} P_k \boldsymbol{\pi}_k \text{ with } \sum_{k=1}^{K_e} P_k = 1
\boldsymbol{\Sigma}^{new} = \operatorname{UPDCov}(\boldsymbol{\pi}^{new}, P_{k=1:K_e})
                \sigma^{new} = UPDSIGMA(\sigma)
                \bar{\boldsymbol{\pi}} = \bar{\boldsymbol{\pi}}^{new} \quad \boldsymbol{\Sigma} = \boldsymbol{\Sigma}^{new}
                                                              \sigma = \sigma^{new}
        end for
end function
```

```
CMA-ES with adaptive constraints
 function CMA-ES
         for each gen = 1, ..., n_{GENERATIONS} do
                  for k = 1, \dots, K do
                           \boldsymbol{\pi}_k \sim \mathcal{N}(\boldsymbol{\pi}, \boldsymbol{\sigma}^2 \boldsymbol{\Sigma})
                  end for
                  for k = 1, \dots, K do
                           J_k = J(\boldsymbol{\pi}_k)
                  end for
                   [l, r, \overline{r}] = \text{COLLECTVIOLATION}(\boldsymbol{\pi}_k, \boldsymbol{\varepsilon})
                  w^{new} = \text{UPDATEWEIGHT}(w, r, \bar{r})
                  \hat{J}_k = \text{WEIGHTPENALTY}(w^{new}, l)
                 \begin{aligned} & \boldsymbol{\pi}_{1:K_e} = \operatorname{SORT}(\boldsymbol{\pi}_{k=1:K}, \hat{J}_{k=1:K}) \\ & \boldsymbol{\pi}^{new} = \sum_{k=1}^{K_e} P_k \boldsymbol{\pi}_k \text{ with } \sum_{k=1}^{K_e} P_k = 1 \\ & \boldsymbol{\Sigma}^{new} = \operatorname{UPDCov}(\boldsymbol{\pi}^{new}, P_{k=1:K_e}) \end{aligned}
                  \sigma^{new} = \text{UPDSIGMA}(\sigma)
                  \bar{\boldsymbol{\pi}} = \bar{\boldsymbol{\pi}}^{new} \quad \boldsymbol{\Sigma} = \boldsymbol{\Sigma}^{new}
         end for
 end function
```

```
(1+1)-CMA-ES with Cov. Const. Adapt.
  function (1+1)-CMA-ES
       \pi = FINDFEASIBLESTARTINGPOINT()
       for each gen = 1, ..., n_{GENERATIONS} do
            \boldsymbol{\pi}_1 = \boldsymbol{\pi} + \sigma \mathbf{D} \mathbf{z} (Eq.4)
            if ConstrViolation(\pi_1) then
                 \mathbf{D}^{new} = \text{UPCOVCONSTR}(); \mathbf{D} = \mathbf{D}^{new}
                  J^{new} = J(\boldsymbol{\pi}_1)
                 if J^{new} > J then
                       \mathbf{D}^{new} = \text{UPCovSucc}()
                       \sigma^{new} = \text{UPDSIGMA}(\sigma)
                  \pi = \pi_1; \mathbf{D} = \mathbf{D}^{new}; \sigma = \sigma else if J^{new} > J^{old} then
                       \mathbf{D}^{new} = \text{UPCOVACTIVE}(); \mathbf{D} = \mathbf{D}^{new}
                  end if
            end if
       end for
  end function
```

Fig. 4. Pseudocode for the three variants of constrained CMA-ES: the first is with vanilla penalty (Section III-B), the second is the adaptive penalties method of [12] (Section III-C), the third is a (1+1)-CMA-ES with covariance constrained adaptation as in [2] (Section III-D).

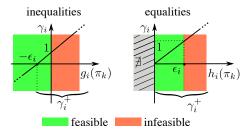


Fig. 5. This illustration shows the relation between ε_i and γ_i for inequality and equality constraints as in Eq. 3. As described in Section III-C, the green and red regions identify the constraint values that are respectively labeled as "feasible" and "infeasible". One may notice that ε_i induces a relaxation for the equality constraint: therefore it could be possible to label as feasible a solution that violates the constraint (how much depends on ε). On the contrary, it is noticeable that γ_i^+ in the inequality constraint also includes a boundary region determined by ε_i where the constraint is satisfied.

Each time a candidate outperforms the current best, **s** and **D** are updated (UPCOVSUCC in Fig. 4):

$$\mathbf{s}^{new} = (1 - c)\mathbf{s}\sqrt{c(2 - c)}\mathbf{D}\mathbf{z}$$

$$\mathbf{D}^{new} = \sqrt{1 - c_{cov}^{+}}\mathbf{D} + \frac{\sqrt{1 - c_{cov}^{+}}}{||\mathbf{w}||^{2}} \left(\sqrt{1 + \frac{c_{cov}^{+}||\mathbf{w}||^{2}}{1 - c_{cov}^{+}}} - 1\right)\mathbf{s}\mathbf{w}^{T}$$

where c_{cov}^+ and c are both factors that control the update rate of s and D respectively, while $\mathbf{w} = \mathbf{D}^{-1}\mathbf{s}$. Instead, if the current candidate is feasible but its performance is lower than the predecessors, the Cholesky factor D is actively updated (UPCOVACTIVE in Fig. 4):

$$\mathbf{D}^{new} = \sqrt{1 + c_{cov}^{-}} \mathbf{D} + \frac{\sqrt{1 + c_{cov}^{-}}}{||\mathbf{z}||^{2}} \left(\sqrt{1 - \frac{c_{cov}^{-}||\mathbf{z}||^{2}}{1 + c_{cov}^{-}}} - 1 \right) \mathbf{Dzz}^{T}$$

where c_{cov}^- is again a constant that determines the update rate. In this case **s** is not updated because the current candidate is not better in terms of fitness.

To handle constraints, the key idea is to update the covariance matrix whenever a constraint is violated, by reducing

the components of \mathbf{Dz} in the direction that is orthogonal to the constraint, as illustrated in Fig. 6. Each time the j-th constraint is violated, we update the corresponding constraint vector $\mathbf{v_i} \in \mathbb{R}^{np}$ and the matrix \mathbf{D} (UPCOVCONSTR in Fig. 4):

$$\mathbf{v}_{j}^{new} = (1 - c_{c})\mathbf{v}_{j} + c_{c}\mathbf{Dz}$$

$$\mathbf{D}^{new} = \mathbf{D} - \frac{\beta}{\sum_{j=1}^{n_{C}} |_{g_{j}(\boldsymbol{\pi}_{1} > 0)}} \sum_{j=1}^{n_{C}} |_{g_{j}(\boldsymbol{\pi}_{1} > 0)} \frac{\mathbf{v}_{j}\mathbf{w}^{T}}{\mathbf{w}^{T}\mathbf{w}}$$

where c_c and $\boldsymbol{\beta}$ are constants that tune the update step respectively for \mathbf{v}_j and \mathbf{D} , $\mathbf{w}_j = \mathbf{D}^{-1}\mathbf{v}_j$ and $|_{g_j(\boldsymbol{\pi}_1 > 0)}$ is equal to one when $g_j(\boldsymbol{\pi}_1) > 0$ and zero otherwise.

In summary, the method searches for the optimal solution by testing one sample at the time and accounting for the constraints in the covariance adaptation to stay away from infeasible regions. The algorithm is designed in such a way that the mean of the search distribution is updated only if the fitness improves and the candidate is a feasible solution: these two elements ensure that the solution of the optimization problem always satisfies the constraints. However, unlike the other methods, this requires a feasible¹ starting candidate to work, otherwise the exploration process quickly gets stuck. Hence, this method cannot be started from scratch or random values, but needs the pre-computation of a feasible starting point. This is not an issue, since we can always find a feasible starting point that satisfies all the constraints, even if it does not enable the robot to achieve the global task goal (a quick solution is to set the robot in a feasible posture and keep this position by setting the posture task priority to 1 and the others to 0).

IV. BENCHMARKING THE ALGORITHMS

In this section we test the algorithms described in Section III to decide which one better suits our problem. We compare their performances on five different benchmarks:

¹A candidate solution is feasible if it satisfies all the constraints.

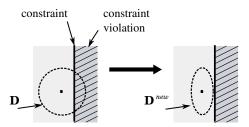


Fig. 6. This illustration shows the effect of the covariance adaptation with constraints, as described in Section III-D. A linear inequality constraint, represented by the vertical thick line, divides the parameter space into a region where the constraint is not violated (light grey) and a region where the constraint is violated (dark grey). The covariance $\bf D$ of the search distribution is updated in such a way that the successor samples will not fall into the region where the constraint is active: the updated covariance $\bf D^{new}$ is directed orthogonally with respect to the constraint.

- g07: $n_P = 10, n_{IC} = 8, n_{EC} = 0$ - g09: $n_P = 7, n_{IC} = 4, n_{EC} = 0$ - HB: $n_P = 5, n_{IC} = 6, n_{EC} = 3$ - RB1: $n_P = 15, n_{IC} = 32, n_{EC} = 0$ - RB2: $n_P = 15, n_{IC} = 50, n_{EC} = 0$

The first three are classical benchmarks for constrained optimization [2], that is analytic problems with known optimal solutions; the last two are new benchmarks that we designed ad hoc to evaluate the performance of the algorithms on robotic problems with growing complexity. More in detail, RB1 is a problem inspired by our previous work [1] where a KUKA LWR (7DOF) has to reach a goal position with its end-effector behind an obstacle, while satisfying constraints of joint position limits, joint torque limits and obstacle avoidance. RB2 has a similar setting with a second obstacle to avoid and another set of constraints coming from joint velocity limits. To compare the performance of the algorithms on these benchmarks, we define the following metrics:

- m_1 : distance from the optimal solution, defined as $m_1 = \|\boldsymbol{\pi}^{\circ} \boldsymbol{\pi}^*\|$, where $\boldsymbol{\pi}^{\circ}$ is the optimal solution (known) and $\boldsymbol{\pi}^*$ the best solution found by the constrained optimization algorithm;
- m_2 : constraints violation, defined as $m_2 = \sum_{i=1}^{n_C} |\hat{e}(i, \boldsymbol{\pi}^*)|$, where $\hat{e}(i, \boldsymbol{\pi}) = |_{g_i(\boldsymbol{\pi}) > 0} g_i(\boldsymbol{\pi})$ for the inequality constraints and $\hat{e}(i, \boldsymbol{\pi}) = |_{h_i(\boldsymbol{\pi}) \neq 0} h_i(\boldsymbol{\pi})$ for the equality constraints basically it sums all the constraints that are violated;
- m_3 : number of steps to converge, or settling time, defined as $m_3 = n_{sc}(\delta)$, the number of steps after which the fitness function reaches a steady state condition, i.e., its value is bounded between $\pm \delta\%$ of the steady state value here, we set $\delta = 2.5$;
- m_4 : best fitness, defined as $m_4 = J(\pi^*)$, i.e., the fitness of the best solution found by the constrained optimization algorithm.

To provide a baseline, we use the (deterministic) constrained optimization function *fmincon* in Matlab, using the SQP method. This is a suitable choice because it does not require the gradient of the objective function for non-linear constrained optimization problem with nonlinear constraints.

Since (1+1)-CMA-ES with covariance constrained adaptation (third algorithm, Section III-D) needs a feasible candidate solution as a starting point, to make a fair comparison all the algorithms start from the same initial position. We perform 40 repetitions of the optimization process per each test problem with an exploration rate = 0.1 and a 5000 samples to assure the convergence of the methods.

Fig. 7 shows the results of the numerical experiments with the five benchmarks. The top row reports on the results for g07, g09, HB with metrics m_1, m_2, m_3 , while the bottom row reports on the results for the robotics benchmarks RB1, RB2, with metrics m_2, m_3, m_4 (m_1 cannot be used in this case because the optimal solution $\boldsymbol{\pi}^{\circ}$ is not known). We also compared the four algorithms in terms of computational time, and did not find significant differences (for example, the optimal solution for RB2 is found on average in $\approx 1.7\text{e+}04$ s for the CMA-ES variants and 1.9e+04 s for *fmincon* on a i5 laptop with Matlab).

(1+1)-CMA-ES with covariance constrained adaptation offers the best trade-off between performance and constraints' satisfaction both on the analytic and the robotic benchmarks. It always ensures full satisfaction of the constraints while the other methods sometimes fail. Its settling time is comparable to the other stochastic algorithms, while *fmincon* converges faster. *fmincon* could seem more appealing, but on the robotic benchmarks its best fitness is lower and actually quite close to the fitness of the starting point (meaning that the algorithm does not really "explore"). Therefore *fmincon* does not seem a suitable candidate for solving robotic problems with a lot of constraints.

The different performance of the algorithms in the analytic and robotic benchmarks confirms the benefit gained by designing two new robotics benchmarks RB1,RB2. Overall, considering the zero constraint violations and the capability to find a good solution, we choose (1+1)-CMA-ES with covariance constrained adaptation for our experiments with the iCub robot.

V. ROBOTIC EXPERIMENTS

In this section we apply (1+1)-CMA-ES with covariance constrained adaptation to our multi-task control framework (Section II): we use it to optimize the task priorities and to obtain a solution that never violates the constraints. In the following, we report on the experiments performed to optimize the whole-body movements of the iCub humanoid robot.

We designed two experiments using the 17 DOF of the upper-body of the robot (arms and torso). In the experimental scenario, a rectangular obstacle similar to a wall, as large as the robot's chest and 2 cm thick, is placed about 20 cm in front of the robot.

The first experiment is aimed at reaching with one hand a goal Cartesian position behind the wall. There are three elementary tasks. The first is about reaching the desired Cartesian position $\mathbf{p}_r^* = [0.35, -0.15, 0.7]$ (m) with the right hand frame of the robot. The second is about reaching a desired Cartesian position $\mathbf{p}_{elbr}^* = [0.35, -0.15, 0.7]$

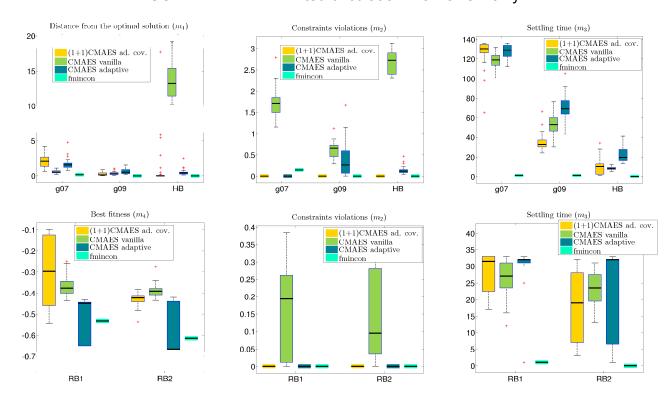


Fig. 7. Performance comparison of the three constrained CMA-ES algorithms and the baseline *fmincon* algorithm from Matlab using the SQD method. The top row reports on the results on three standard analytical constrained optimization benchmarks (g07, g09, HB - see [2]). The bottom row reports on the results on two robotics benchmarks (RB1, RB2) that we designed *ad hoc* to evaluate the performance of the algorithms on robotics problems.

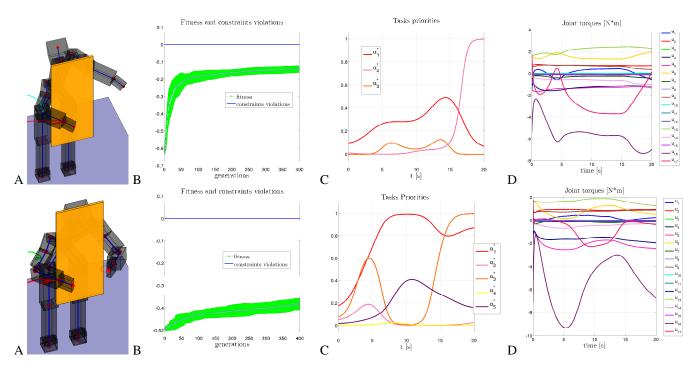


Fig. 8. Two experiments with the iCub, about reaching a goal behind the wall with one or two hands. A) The robot's movement visualized by the mex model. B) The median constraint violation and fitness optimized by (1+1)-CMA-ES with covariance constrained adaptation (over 25 experiments) - the constraints are never violated C-D) The task priorities and joint torques of the best solution. The experiments are also shown in the attached video.

[0.24, -0.23, 0.7] (m) with the elbow frame. The third task is about keeping the initial joint configuration $\mathbf{q}^* = \mathbf{q}^*$ [0,45,0,0,-20,30,0,0,45,0,0,0,30,0,0,0,0] (deg). Basically, the goal is hidden behind the wall, and to reach it

with the hand the robot must bend its elbow around the wall corner; the third task should prevent the robot moving the right arm and the torso. The task priorities are approximated by RBFs with $n_r = 5$, therefore $n_P = 5 \times 3 = 15$. There are $n_C = n_{IC} = 73$ inequality constraints: joint position limits, joint torque limits and distance constraints to avoid collisions between the robot and the obstacle. Precisely, a minimal distance of 3 cm is required between the obstacle and a set of pre-defined collision check points (located at the origin of the frames of right shoulder, elbow, wrist, hand and head). For this experiment we use the following fitness function:

$$\phi = -\frac{1}{2} \left[\frac{\sum_{i}^{T} \|\mathbf{p}_{r,i} - \mathbf{p}_{r}^{*}\|}{\varepsilon_{max}} + \frac{\sum_{i}^{T} \mathbf{u}_{i}^{2}}{u_{max}} \right]$$
(5)

where $\phi \in [-1,0]$, T is the number of control steps (the task duration is 20 s, and we control at 1 ms), $\mathbf{p}_{r,i}$ is the right hand frame position at time i, \mathbf{p}_r^* the goal position for the hand frame and $\varepsilon_{max} = 120$ and $u_{max} = 3.5 * 10^5$ are two scaling factors. The first term of ϕ penalizes the cumulative distance from the goal, while the second term penalizes the global control effort.

The second experiment complicates the first by adding 2 more tasks. The aim is to reach a Cartesian goal position with both robot hands. Two Cartesian goal tasks for both hands and elbows are set symmetrically with respect to iCub's sagittal plane. A fifth posture task is set as to keep the torso as straight as possible during the movement.

- Task 1 : $\mathbf{p}_r^* = [0.35, -0.15, 0.68]$ (m)
- Task 2 : $\mathbf{p}_{elbr}^* = [0.21, -0.25, 0.68]$ (m)
- Task 3 : $\mathbf{p}_{l}^{*} = [0.3, 0.0248, 0.68]$ (m)
- Task 4: $\mathbf{p}_{elbl}^* = [0.21, 0.1138, 0.68]$ (m)
- Task 5: $\mathbf{q}^* = [0,45,0,0,-20,30,0,0,45,0,0,0,30,0,0,0,0]$ (deg)

The task priorities are approximated by RBFs with $n_r = 5$, therefore $n_P = 5 \times 5 = 25$. The optimization is carried out under the same constraints as in the first experiment with the addition of the left arm collision checks. This means we have $n_C = n_{IC} = 77$ inequality constraints. The fitness is:

$$\phi = -\frac{1}{2} \left(\frac{\sum_{i}^{T} \|\mathbf{p}_{r,i} - \mathbf{p}_{r}^{*}\|}{\varepsilon_{max}} + \frac{\sum_{i}^{T} \|\mathbf{p}_{l,i} - \mathbf{p}_{l}^{*}\|}{\varepsilon_{max}} + \frac{\sum_{i}^{T} \mathbf{u}_{i}^{2}}{u_{max}} \right)$$
(6)

where $\mathbf{p}_{l,i}$ is the left hand frame position at time i, \mathbf{p}_l^* the goal position for the left hand frame.

In all the experiments, we seek the best solutions that do not violate any of the constraints. We employ (1+1)-CMA-ES as described in Section III-D with the exploration rate set to 0.1 (this is the only parameter to tune and this is the default value!).

Fig. 8 shows the median fitness and constraint violation obtained by 25 experiments. The fitness grows nicely (remember $\phi = 0$ would be the optimum). Most importantly, the **constraints are never violated**, which is exactly what we wanted to obtain. We also show the task priorities and the joint torques from one of the best solutions: they are both smooth, and it is clear that optimizing the task priorities manually would be very difficult if these solutions

were to be achieved. The video attachment shows the robot movements in the two experiments and the activation of the tasks priorities evolving in time.

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed to optimize the task priorities of multi-task controllers by a stochastic constrained optimization algorithm that ensures that the constraints are never violated. We benchmarked four constrained optimization algorithms in robotics applications and found that (1+1)-CMA-ES with covariance constrained adaptation meets our requirements in terms of fitness of the solution and constraint satisfaction. Our framework can be used to generate optimized whole-body movements that always comply with safety requirements, as shown in two bimanual experiments with the iCub. Our current limit is the computation time, therefore the method is suited at this time only for offline synthesis of whole-body behaviors of humanoid robots. Ongoing work is aimed at applying the method for safe trajectory optimization (complementary to task priority optimization) and speeding up the computation.

REFERENCES

- V. Modugno, G. Neumann, E. Rueckert, G. Oriolo, J. Peters, and S. Ivaldi, "Learning soft task priorities for control of redundant robots," in *ICRA*, 2016.
- [2] D. V. Arnold and N. Hansen, "A (1+1)-CMA-ES for constrained optimisation," in GECCO, 2012, pp. 297–304.
- [3] L. Saab, O. Ramos, F. Keith, and N. Mansard et al, "Dynamic whole-body motion generation under rigid contacts and other unilateral constraints," *IEEE Trans. on Robotics*, vol. 29, pp. 346–362, 2013.
- [4] A. Del Prete, F. Nori, G. Metta, and L. Natale, "Prioritized motion-force control of constrained fully-actuated robots: Task space inverse dynamics," *Robotics and Auton. Systems*, vol. 63, pp. 150–157, 2015.
- [5] J. Salini, V. Padois, and P. Bidaud, "Synthesis of complex humanoid whole-body behavior: A focus on sequencing and tasks transitions," in *ICRA*, 2011, pp. 1283–1290.
- [6] M. Liu, Y. Tan, and V. Padois, "Generalized hierarchical control," Autonomous Robots, vol. 40, pp. 17–31, 2016.
- [7] N. Dehio, R. F. Reinhart, and J. J. Steil, "Multiple task optimization with a mixture of controllers for motion generation," in *IROS*, 2015.
- [8] S. Ha and C. Liu, "Evolutionary optimization for parameterized wholebody dynamic motor skills," in *ICRA*, 2016.
- [9] R. Lober, V. Padois, and O. Sigaud, "Variance modulated task prioritization in whole-body control," in *IROS*, 2015.
- [10] N. Hansen and A. Ostermeier, "Completely derandomized selfadaptation in evolution strategies." *Evolutionary Computation*, vol. 9, pp. 159–195, Jan 2001.
- [11] F. Berkenkamp, A. P. Schoellig, and A. Krause, "Safe controller optimization for quadrotors with Gaussian processes," in *ICRA*, 2016.
- [12] G. Collange, N. Delattre, N. Hansen, I. Quinquis, and M. Schoenauer, "Multidisciplinary optimization in the design of future space launchers," in *Multidisciplinary Design Optimization in Computational Mechanics*. Wiley-Blackwell, 2013, pp. 459–468.
- [13] J. Peters, M. Mistry, F. Udwadia, J. Nakanishi, and S. Schaal, "A unifying framework for robot control with redundant DOFs," *Autonomous Robots*, vol. 24, pp. 1–12, Jan 2008.
- [14] S. Chiaverini, B. Siciliano, and O. Egeland, "Redundancy resolution for the human-arm-like manipulator," *Robotics and Autonomous Systems*, vol. 8(3), pp. 239–250, Jan 1991.
- [15] Y. Nakamura and H. Hanafusa, "Inverse kinematic solutions with singularity robustness for robot manipulator control," J. Dyn. Sys., Meas., Control, vol. 108 (3), pp. 163–171, 1986.
- [16] C. Igel, T. Suttorp, and N. Hansen, "A computational efficient covariance matrix update and a (1+1)-CMA for evolution strategies," in GECCO, 2006.