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Abstract— We consider the problem of gait generation for
a humanoid robot that must walk to an assigned Cartesian
goal. As a first solution, we consider a rather straightforward
adaptation of our previous work: an external block produces
high-level velocities, which are then tracked by a double-stage
intrinsically stable MPC scheme where the orientation of the
footsteps is chosen before determining their location and the
CoM trajectory. The second solution, which represents the main
contribution of the paper, is conceptually different: no high-
level velocity is generated, and footstep orientations are chosen
at the same time of the other decision variables in a single-
stage MPC. This is made possible by carefully redesigning
the motion constraints so as to preserve linearity. Preliminary
results on a simulated NAO confirm that the single-stage
method outperforms the conventional double-stage scheme.

I. INTRODUCTION

One of the most challenging problems in the control
of humanoids is generating locomotion gaits. The main
requirement is obviously that the robot maintains dynamic
balance while walking. One way to guarantee this is to
move the Zero Moment Point (ZMP, the point where the
horizontal component of the moment of the ground reaction
forces becomes zero) in such a way that it is always inside
the support polygon of the robot. Many gait generation
schemes enforce this ZMP condition by computing a suitable
trajectory for the robot Center of Mass (CoM). Due to the
complexity of humanoid dynamics, simplified models are
invariably used to relate the evolution of the CoM to that of
the ZMP. A popular choice is the second-order linear system
known as the Linear Inverted Pendulum (LIP) [1]. Once a
CoM trajectory is generated, kinematic control provides joint
commands that drive the robot along it.

In the literature, walking gaits have been mainly designed
for the case of persistent locomotion, in which the robot
must track a non-decaying velocity, e.g., see [2]. Here, we
consider instead the problem of walk-to locomotion, in which
the humanoid has to reach an assigned goal in the workspace
and stop there. This is a relevant case in applications, e.g., for
a humanoid robot that must move to various locations of its
environment to execute certain tasks. Some footstep planning
algorithms exist for this situation, such as [3], [4]; however,
these planners may not be able to run in real time or lack
robustness in the presence of perturbations or changes in the
environments. A related approach is presented in [5], where
inverse optimal control is applied to walk-to locomotion,
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focusing however more on the replication of human behavior
than on actual gait generation.

Model Predictive Control is a powerful tool for gen-
erating walking gaits. First, it makes possible to enforce
constraints, such as the fact that the ZMP must remain
within the support polygon. Second, it provides considerable
robustness to perturbations. For real-time computation, it
is desirable to derive a quadratic programming problem,
where the constraints must be linear in the decision variables.
However, the ZMP constraints are found to be nonlinear with
respect to the footstep orientations. In [6] this problem is
circumvented by choosing the latter before solving for the
other variables. Another approach is taken in [7], where the
nonlinear optimization problem is solved by using Mixed-
Integer quadratic programming.

In this paper, we consider two MPC-based approaches for
generating walk-to gaits. The first is a rather straightforward
adaptation of the intrinsically stable MPC framework pro-
posed in [8]: an external block produces high-level velocities,
which are then tracked by a double-stage MPC scheme where
the orientation of the footsteps is chosen before determining
their location and the CoM trajectory. The second, which
represents the main contribution of the paper, does not
require high-level reference velocities, because the Cartesian
regulation action is directly embedded in the cost function.
In addition, footstep orientations are chosen at the same
time of the other decision variables in a single-stage MPC.
This is made possible by carefully redesigning the motion
constraints so as to preserve linearity.

The paper is organized as follows. In Sect. II we define
the problem and outline the double-stage and single-stage
approaches, which are described in detail in Sect. III and
Sect. IV, respectively. Comparative simulations on a NAO
humanoid robot are presented in Sect. V, while Sect. VI
mentions some extensions we are currently considering.

II. PROBLEM AND APPROACHES

Consider a situation in which a humanoid robot must reach
a given (planar) goal in the workspace. To achieve this, it
is necessary to generate a walking gait that leads the robot
to the goal and stop its motion there (walk-to). Throughout
the paper, we assume that the humanoid knows the relative
position of the goal with respect to itself, an information that
can be reconstructed using for instance an on-board camera.

We consider two MPC-based approaches. In the first
(Fig. 1, top), an external block produces high-level velocities,
which are then tracked by a double-stage MPC scheme where
the orientation of the footsteps is chosen before determining
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Fig. 1. Possible approaches for walk-to gait generation using MPC. Top: an adaptation of the intrinsically stable gait generation framework proposed
in [8], using an external block for high-level velocity generation and a double-stage MPC. Bottom: the single-stage MPC approach proposed in this paper.

their location and the CoM trajectory. The second (Fig. 1,
bottom), which represents the main contribution of the paper,
is conceptually different: no high-level velocity is generated
and, moreover, footstep orientations are chosen at the same
time of the other decision variables.

In the next sections we discuss these two approaches,
called respectively double-stage and single-stage MPC.

III. GAIT GENERATION VIA DOUBLE-STAGE MPC

A description is now given of the individual blocks of the
approach based on double-stage MPC (Fig. 1, top). We use
a local frame attached the robot, having as origin the current
projection of the robot CoM on the ground. The x (sagittal)
axis is aligned with the support foot while the y (coronal)
axis points in the orthogonal direction to it.

A. High-Level Velocity Generation

This block generates high-level velocity commands to be
used as reference signals by the MPC scheme.

As in [9], [10], we will adopt a unicycle as template model
for high-level velocity generation. In particular, consider a
unicycle placed at the origin of the current robot frame and
aligned with the sagittal axis. Control velocities are produced
by the following Cartesian regulator [11]:

v = k1 xg

ω = k2 · atan2(yg, xg),

where k1, k2 > 0 and (xg, yg) are the Cartesian coordinates
of the goal in the local frame (assumed to be known, see
Section II). Note that the driving velocity v is proportional
to the projection of the Cartesian error on the x axis, while
the angular velocity ω is proportional to the pointing error.

B. Double-stage MPC

All MPC computations are performed in the local robot
frame at the current sampling instant tk.

1) Choice of footstep orientations: To maintain linearity
of the constraints in our MPC formulation, the orientation
of the footsteps must be chosen before determining their
location and the CoM trajectory [6].

Denote by Th the MPC prediction horizon, and assume
that the robot performs steps of constant duration Ts: the
number of footsteps within Th is then M = ceil(Th/Ts).
The orientations θ1, . . . , θM of these footsteps in the current
robot frame are chosen on the basis of the angular velocity
ω (assumed to be constant1 within Th) by minimizing the
quadratic cost function

M∑
j=1

(
θj − θj−1

Ts
− ω

)2

subject to the linear constraint |θj − θj−1| ≤ θmax, where
θmax is the maximum acceptable change of orientation
between two consecutive footsteps.

2) Choice of CoM trajectory and footstep locations: Once
footstep orientations have been chosen, the gait must be
completed by the CoM trajectory and the footstep locations.

The motion model consists of two identical, decoupled and
dynamically extended LIPs, one along the sagittal axis and
the other along the coronal axis. For example, the sagittal

1This assumption, also made for v, is justified by the short Th which our
intrinsically stable MPC scheme can accommodate (more on this later).



model is ẋc
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ẋz

 =

 0 1 0
η2 0 −η2
0 0 0

 xc
ẋc
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where xc and xz are respectively the CoM and ZMP coor-
dinates, and η =

√
g/h, with h the constant CoM height.

The MPC uses sampling intervals of duration δ over the
prediction horizon Th = N δ. At time tk, the decision
variables are the piecewise-constant ZMP velocities during
the next N sampling intervals, denoted by ẋk+iz , ẏk+iz , for
i = 1, . . . , N , and the location of the next M footsteps,
denoted by (xjf , y

j
f ), for j = 1, . . . ,M .

The cost function to be minimized is
N∑
i=1

(
(ẋk+iz )2 + kx(ẋ

k+i
c − v cos(iωδ))2+

(ẏk+iz )2 + ky(ẏ
k+i
c − v sin(iωδ))2

)
, (1)

which includes two terms penalizing deviations from the
high-level reference velocities.

Footstep locations do not appear in the cost function and
influence the QP problem through the linear constraints to
which the problem is subject, i.e. the ZMP constraint for
maintaining balance, the CoM stability constraint, and the
kinematic feasibility constraint on the footstep location.

The first constraint imposes that the ZMP must always
lie inside the robot support polygon. In single support, this
corresponds to defining a rectangle centered at (xjf , y

j
f ),

oriented as θj , and having dimensions xdimz , ydimz , where the
ZMP must fall2:

RTj

 δ
∑k+i
l=k+1 ẋ

l
z − x

j
f

δ
∑k+i
l=k+1 ẏ

l
z − y

j
f

 ≤ 1

2

(
xdimz

ydimz

)
−RTj

(
xkz

ykz

)
,

(2)
where Rj is the rotation matrix associated to angle θj .

To guarantee the boundedness of the CoM trajectory
regardless of the duration of the prediction horizon Th, we
enforce the stability constraint

1

η

1− eδη

1− eNδη
N∑
i=1

eiδηẋk+iz = xkc +
ẋkc
η
− xkz , (3)

where we must set xkc = 0 in view of the use of a local frame.
For an interpretation of this constraint, see [8]; comparative
simulations have shown that its adoption allows to reduce
the prediction horizon Th without jeopardizing gait stability.

The last constraint ensures kinematic feasibility of the
footstep locations:

RTj−1

(
xjf − x

j−1
f

yjf − y
j−1
f

)
≤ ±

(
0

`

)
+

1

2

(
xdimf

ydimf

)
, (4)

where xdimf and ydimf are the dimensions of the rectangular
feasible area, and ` is its displacement from the previous
footstep in the coronal direction. The signs in the rhs
alternate for the two feet.

2For compactness, in the following we only specify the right-hand-side
of inequality constraints.

IV. GAIT GENERATION VIA SINGLE-STAGE MPC

We now come to the description of the method for walk-to
gait generation proposed in this paper, i.e., the single-stage
intrinsically stable MPC framework of Fig. 1, bottom.

Note that no high-level velocity generation block is
present; the Cartesian regulation action is directly embedded
in the new MPC cost function. The first stage of the previous
scheme has also been eliminated by choosing the footstep
orientations at the same time of the other decision variables
and properly redefining all constraints to preserve linearity,
with the exception of the stability constraint (3) which
remains linear and is therefore unchanged.

The reference frame and motion model used in single-
stage MPC are exactly the same of double-stage MPC. In
the following, we discuss the new cost function and the
redefinition of the constraints.

A. Cost Function

The cost function for single-stage MPC is

J = αz

N∑
i=1

(
(ẋk+iz )2 + (ẏk+iz )2

)
+

αg

N∑
i=1

(
(xg − xk+ic )2 + (yg − yk+ic )2

)
+

αθ

M∑
j=1

(θjg − θj)2 + αv

N∑
i=1

(ẋk+ic − vref)2,

where αz , αg , αθ, αv are positive weights.
The first term is obviously the control effort and is also

present in (1). The second term accounts for the positioning
error with respect to the goal. The role of the third term is
to force the robot to align its footsteps to the line of sight to
the goal; this is obtained by defining θjg as

θjg = j λ Ts · atan2 (yg, xg) ,

where λ > 0 is a control gain.
In the fourth term, vref represent a reference speed along

the sagittal axis, defined to be constant up to a certain
distance to the goal, from where it decreases linearly to
become zero at the goal. The effect of this term is to avoid
large velocities away from the goal and, on the other hand,
excessively slow motion in its vicinity.

B. Constraints

1) Single-support ZMP constraint: The single-support
ZMP constraint (2) becomes obviously nonlinear if the
orientation θj of the footstep is still a decision variable.
To avoid this problem, we redefine the constraint so that
it becomes independent on the foot orientation.

In particolar, consider the construction in Fig. 2. For
illustration, assume that the prediction horizon only includes
one footstep (M = 1) and xdimz = ydimz (square footprint).
The blue square represents the current footstep, while the red
squares are two different placements of the predicted footstep
(same location but different orientations). The green square,
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Fig. 2. Redefining the ZMP constraint during single support.

which has the same orientation as the current footstep but
size reduced by a factor of

√
2, is always contained in the red

squares, irrespective of their orientation. Thus, if the ZMP is
located inside the green square, it is certainly contained in
the actual footprint, whatever its orientation.

In conclusion, the ZMP constraint during single support
can be redefined for any value of M as(

δ
∑k+i
l=k+1 ẋ

l
z − x

j
f

δ
∑k+i
l=k+1 ẏ

l
z − y

j
f

)
≤ 1

2

(
x̃dimz
ỹdimz

)
−
(
xkz
ykz

)
,

where x̃dimz = xdimz /
√
2 and ỹdimz = ydimz /

√
2.

The above procedure for preserving linearity obviously
implies a small reduction of the ZMP constraint area with
respect to the actual footprint. However, this effect is more
than balanced by the overall increase in the area that becomes
feasible for stepping thanks to the inclusion of the foosteps
orientation in the main MPC formulation (see Fig. 4).

2) Double-support ZMP constraint: In a double support
phase, part of the boundary of the support polygon is defined
by a nonlinear function of the relative position of the two
feet. For this reason, the ZMP constraint is usually ignored
during double support. In the following, we take inspiration
from [12] to redefine this constraint so that it becomes linear
and can therefore be enforced.

Consider the construction shown in Fig. 3. As before,
we consider the case M = 1 for illustration. The support
polygon during double support is shown in cyan. The ZMP
should move from the green square (the single-support ZMP
constraint area redefined previously) within the right footstep
to the green square within the left footstep. Suppose that this
transition takes D sampling intervals (D = 5 in the figure).
This leads to define D equispaced support squares, shown in
purple in Fig. 3. During the n-th time-step (n = 1, . . . , 5),
the support square n is activated. By doing so, the ZMP is
always contained inside the original double support polygon
while preserving the linearity of the ZMP constraints.

According to the above discussion, the ZMP constraint
during double support is redefined as(
δ
∑k+i
l=k+1 ẋ

l
z − n

F x
j−1
f − F−n

F xjf
δ
∑k+i
l=k+1 ẏ

l
z − n

F y
j−1
f − F−n

F yjf

)
≤ 1

2

(
x̃dimz
ỹdimz

)
−
(
xkz
ykz

)
,

with n = 1, . . . , 5 and F = D + 1.
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Fig. 3. Redefining the ZMP constraint during double support.

3) Kinematic feasibility constraint: As the ZMP con-
straint during single support, the kinematic feasibility con-
straint (4) becomes nonlinear if the orientations of the foot-
steps have not been chosen yet. To circumvent this problem,
we redefine also this constraint appropriately.

Figure 4 shows two different predictions (same location,
different orientations) for a right footstep and the corre-
sponding feasible areas (solid line) for placing the next left
footstep. Note that both the location and the orientation of
these areas depends on the orientation of the right footstep.
To remove this dependency, a reduced feasible area (dashed
line) is defined in each original area. This reduced region,
whose orientation is fixed, is then translated based on the
orientation of the right footstep. By forcing the ZMP to be
inside the union of all translated regions, we guarantee that
it is also inside the union of the original feasibility areas.
This is a linear constraint which can be written as(

xj+1
f − xjf − ` θj
yj+1
f − yjf

)
≤
(

x̃dimf /2
`+ ỹdimf /2

)
,

with x̃dimf , ỹdimf the dimensions of the reduced feasible area.
Note that the above construction is valid for the case in

which two footsteps must to be placed within the prediction
horizon (M = 2). In principle, it can be extended to the
case of multiple predicted footsteps, but the reduced feasible
area shrinks quickly, so that it is only practical for small M .
Once again, the fact that our intrinsically stable MPC can
work with a small Th is beneficial also under this viewpoint.

4) Maximum foot rotation constraint: Finally, we must
directly add the linear constraint

|θj − θj−1| ≤ θmax,

which was previously enforced only in the first stage of MPC
(see Sect. III-B.1).

V. COMPARATIVE SIMULATIONS

We now present some simulation results for a NAO hu-
manoid robot in V-REP. Gait generation is performed in real-
time with a control rate of 100 Hz. We have used a sampling
interval δ = 0.01 s, a step duration Ts = 0.3 s (0.2 s of
single support and 0.1 s of double support) and a prediction
horizon Th = 0.6 s, i.e. one gait period. Other parameters
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Fig. 4. Redefining the kinematic feasibility constraint for footstep locations.

are hcom = 0.26 m, xdimz = ydimz = 0.04 m, xdimf = 0.1 m,
ydimf = 0.05 m, ` = 0.125 m, and θmax = π/16. Finally,
we have set k1 = 0.25, k2 = 1, and kx = ky = 10 for
double-stage MPC; and αz = αv = 1, αg = 10, αθ = 2,
λ = 1, x̃dimf = 0.08 m and ỹdimf = 0.03 m for single-stage
MPC. QP problems were solved using qpOASES.

The first simulation, shown in Fig. 5, simply confirms that
the proposed single-stage MPC can effectively produce a
walk-to gait. Note how the robot first aligns with the goal
and then walks in a straight line, naturally decelerating in
the vicinity of the goal and finally stopping there.

The second and third simulations are presented to highlight
the superiority of the proposed single-stage MPC with re-
spect to the double-stage technique. In particular, the second
simulation (Fig. 6) refers to a situation where an impulsive
push is applied to the robot during a single support phase.
Double-stage MPC, in which the ZMP constraints are not
enforced in double support, produces a solution that brings
the ZMP outside the support polygon. Single-stage MPC is
instead able to produce a feasible solution because it includes
ZMP constraints in double support. Note also how the ZMP
profile in the single-stage solution penetrates the footprints
more than in the double-stage solution, due to the reduction
of the ZMP constraint area in the former case.

In view of the results of the second simulation, we
have modified the double-stage MPC by including the same
double support ZMP constraint of single-stage MPC. Sim-
ulations of this modified double-stage MPC have however
revealed another intrinsic drawback of the approach, namely
the rigidity introduced by the fact that the footstep orien-
tations are chosen before the other decision variables. For
example, Fig. 7 refers to another situation where an impulsive
push is applied to the robot during a single support phase.
After the push, double-stage MPC cannot find a solution
that satisfies the double support ZMP constraint because the
footstep orientations are fixed. Instead, single-stage MPC
reacts to the push by adjusting the foot orientations. The
robot can then successfully complete the walk-to motion.

Simulation clips are shown in the accompanying video.

t=0

t=2

t=4

t=6

t=9

t=15

Fig. 5. Simulation 1. NAO successfully walks to the assigned goal using
single-stage MPC (top); the robot CoM, ZMP and footsteps along the
generated motion (bottom).

VI. CONCLUSIONS

In this paper we have introduced a single-stage MPC
framework for generating walk-to gaits for humanoid robots.
The novel formulation does not require an external block
for generating reference velocities, and allows the MPC to
compute simultaneously footsteps locations and orientations
while preserving the linearity of the constraints. To increase
the robustness of the scheme, we have enforced the ZMP
constraint also in the double support phase. Results on a
simulated NAO confirm the superiority of the single-stage
method over the conventional double-stage scheme.

We are currently working towards an experimental val-
idation the proposed approach. We also intend to extend
the proposed method to take into account the presence of
workspace obstacles, following the ideas in [13].
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