88 research outputs found

    Exploiting Recurring Patterns to Improve Scalability of Parking Availability Prediction Systems

    Get PDF
    Parking Guidance and Information (PGI) systems aim at supporting drivers in finding suitable parking spaces, also by predicting the availability at driver’s Estimated Time of Arrival (ETA), leveraging information about the general parking availability situation. To do these predictions, most of the proposals in the literature dealing with on-street parking need to train a model for each road segment, with significant scalability issues when deploying a city-wide PGI. By investigating a real dataset we found that on-street parking dynamics show a high temporal auto-correlation. In this paper we present a new processing pipeline that exploits these recurring trends to improve the scalability. The proposal includes two steps to reduce both the number of required models and training examples. The effectiveness of the proposed pipeline has been empirically assessed on a real dataset of on-street parking availability from San Francisco (USA). Results show that the proposal is able to provide parking predictions whose accuracy is comparable to state-of-the-art solutions based on one model per road segment, while requiring only a fraction of training costs, thus being more likely scalable to city-wide scenarios

    Syllable classification using static matrices and prosodic features

    Get PDF
    In this paper we explore the usefulness of prosodic features for syllable classification. In order to do this, we represent the syllable as a static analysis unit such that its acoustic-temporal dynamics could be merged into a set of features that the SVM classifier will consider as a whole. In the first part of our experiment we used MFCC as features for classification, obtaining a maximum accuracy of 86.66%. The second part of our study tests whether the prosodic information is complementary to the cepstral information for syllable classification. The results obtained show that combining the two types of information does improve the classification, but further analysis is necessary for a more successful combination of the two types of features
    • …
    corecore