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Abstract: Parking Guidance and Information (PGI) systems aim at supporting drivers in finding1

suitable parking spaces, also by predicting the availability at driver’s Estimated Time of Arrival (ETA),2

leveraging information about the general parking availability situation. To do these predictions, the3

most of the proposals in the literature dealing with on-street parking require to train a model for each4

road segment, with significant scalability issues when deploying a city-wide PGI. By investigating a5

real dataset we found that on-street parking dynamics show a high temporal auto-correlation. In6

this paper we present a new processing pipeline that exploits these recurring trends to improve7

the scalability. The proposal includes two steps to reduce both the number of required models and8

training examples. The effectiveness of the proposed pipeline has been empirically assessed on a real9

dataset of on-street parking availability from San Francisco (USA). Results show that the proposal is10

able to provide parking predictions whose accuracy is comparable to state-of-the-art solutions based11

on one model per road segment, while requiring only a fraction of training costs, thus being more12

likely scalable to city-wide scenarios.13

Keywords: Internet of Vehicles; Parking availability Predictions; Smart Mobility; Dataset Reduction;14

Clustering; Scalability15

1. Introduction16

Finding a parking space is one of the main concerns of urban mobility, as it is well recognised that17

a significant fraction of the traffic in crowded urban areas is originated by drivers cruising in search18

of a parking space [1]. The motivation behind this problem lies in that drivers have no knowledge19

about where there could be a free parking space matching their expectations. Thus, they have to roam,20

with significant consequences in terms of additional traffic, pollution, and drivers’ wasted time [1,2].21

Moreover, parking search also affects road safety, since drivers cruising for parking are distracted, and22

thus more likely to hit other road users [3].23

Among the various types of Intelligent Transportation Systems, the Parking Guidance and24

Information (PGI) solutions, integrated within in-vehicle navigation systems or intended as mobile25

apps, aim at significantly reduce this problem, by guiding drivers directly towards streets (or parking26

facilities) with current or future higher availability of free spaces. To this aim, PGIs require parking27

availability information to work. When dealing with on-street parking, this information can be collected28

from stationary sensors, or by means of participatory or opportunistic crowd-sensing solutions from29

mobile apps [4,5] or probe vehicles [6–8]. The collected availability information is then aggregated on30

a remote back-end, to get a dynamic map of the parking infrastructure. This up-to-date map can be31

either pushed to the interested PGI users, or used to feed some prediction algorithms, to forecast the32
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parking availability at the Estimated Time of Arrival (ETA) of a PGI user [9,10], to allow drivers to33

better organise their transport before their departures or during their trips [2].34

In the last years, the availability of sensor techniques to collect real on-street parking availability35

data triggered many researches on proposing solutions to predict parking availability (e.g.: [9–13]),36

mostly using advanced machine/deep learning approaches. Results are encouraging, with prediction37

errors of available stalls in the range of 10 - 15%, on a city-wide scale (e.g [9,10]). Nevertheless,38

most of these approaches require to train one model for each road segment with parking stalls, with39

significant scalability issues when dealing with large urban maps, which can likely comprise hundreds40

of thousands of them. The problem was firstly highlighted by Zheng et al., who investigated the41

effectiveness and the computational requirements of three Machine Learning techniques, being even42

unable to obtain results for some settings "due to the long computation time [...]" [13, p.5]). To the best43

of our knowledge, only one paper introduced a preliminary solution to reduce the computational44

requirements for a service of on-street parking availability prediction [14], based on simple clustering45

solutions.46

To fill this gap, in this paper we present the results of an investigation meant to devise a47

pre-processing technique, leveraging the recurring patterns found in the dataset, to reduce the48

computational load required by an on-street parking prediction system, by minimising the prediction49

models and the training examples. More in detail, as a starting point we analysed the availability50

trends in a real on-street parking dataset from the municipality of San Francisco (USA), and we found51

that each road segment has a high temporal auto-correlation over itself, and a high cross-correlation52

among different trends. From this finding, we propose a pre-processing pipeline for parking prediction53

system where we firstly group together road segments showing a high similarity in parking availability54

trends, by means of a hierarchical clustering technique. The next step should be to train a shared55

prediction model on each of these clusters, to forecast future parking availability, but, as each of56

these clusters might include hundreds of road segments, with a potentially overwhelming number of57

training examples, we propose the use of the Kennard-Stone algorithm [15], to prune the training set,58

by maintaining only the most representative examples. Only after this training set filtering, on top59

of these reduced examples, we train a regressor, like for instance an SVR or a Deep Neural Network.60

As an additional observation, we found that on-street parking dynamics can be very fast: since each61

road segment has a limited number of parking spaces1, each change in the sensed availability has a62

deep impact on the occupancy percentage. Therefore, a misreading leads to abrupt changes in sensed63

availability, that are not related to the actual state. This is a common scenario, as current state-of-the64

art on-street sensing technologies suffer of an intrinsic amount of misreadings, quantifiable in at65

least 10% probability [16–18]. Thus, this kind of data is challenging for machine learning techniques,66

both for model training and performance evaluation, since these time series exhibiting strong, abrupt67

and frequent changes from one sampling instant to the other. To cope with this noise in the data,68

masking the general trend underlying the measurements, which is the real information [12], in our69

pre-processing pipe-line we propose also the use of an optional filtering step, performed by means of70

specifically configured Kalman filters [19].71

To assess the effectiveness of the proposed solution, we conducted an empirical evaluation on72

a real dataset of five weeks of on-street parking data from the SFPark project in San Francisco [20],73

covering 321 road segments, available at [21]. We evaluated the prediction performances of a Support74

Vector Regressor, with an horizon of 30 minutes, considering the solution with and without Kalman75

filters, in combination with three different filtering levels of the Kennard-Stone algorithm. Let us note76

that more advanced prediction techniques might provide better prediction performances, but the focus77

of this investigation is to understand and quantify the impact of the proposed pipeline to prune the78

1 For instance, over 500 road segments in San Francisco (USA) downtown, the most frequent number of parking stalls per
road segment is 6
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dataset, rather than achieving the best possible predictions. Results show that the proposed on-street79

parking availability prediction solution performs in a way that is comparable with state-of-the-art80

techniques based on a model per segment, while requiring a fraction of the computational efforts.81

Indeed, by grouping the 321 segments in just five clusters, each with 4000 training examples of filtered82

data, provided practically the same prediction error (in terms of RMSE) of a model for each of the 32183

models, each with more than 6000 examples, thus reducing by almost two orders of magnitude the84

required training efforts.85

The main contributions of the paper are:86

1. We provide the first analysis, to the best of our knowledge, on the temporal auto-correlation87

phenomenon for on-street parking availability.88

2. We propose a technique to highly reduce the computational requirements of a parking89

availability prediction service, making it potentially scalable to a city-wide level, providing90

empirical evidence that it is able to provide parking predictions whose error is comparable with91

state-of-the-art solutions, based on one model per segment, at a fraction of their training costs.92

3. We provide empirical evidence that, by applying a fast filtering step, the computational93

requirements for training can be further reduced.94

The remainder of this paper is structured as follows: in Section 2 we present the related work on95

data-driven parking space prediction. In Section 3 we provide a detailed analysis on the temporal96

dynamics of parking availability. In Section 4 we present the approaches to predict the parking97

availability based on training data reduction. In Section 5 we describe the experiment design to98

assess the proposed approach, with the results we obtained. Finally, in Section 6 some conclusions are99

outlined, together with some future research directions.100

2. Related Work101

Parking Guidance and Information (PGI) systems require detailed parking space availability102

information [4,5] in order to support drivers. Occupancy information can be easily obtained for103

multi-storey car parks (also known as parking garages, or off-street parking) with controlled accesses104

[5,22], and consequently the most of the data-driven researches addressing the problem to predict105

parking space availability in the near future deal with this kind of facilities by means of different types106

of prediction techniques [23–26]. On the other hand, monitoring in real-time parking occupancy for107

on-street spaces is an open issue, with many challenges still to be faced [2].108

2.1. IoT solutions to Sense On-Street Parking Availability109

To date, two main on-street parking availability monitoring strategies are reported in the literature,110

both based on Internet of Things (IoT) approaches: one based on stationary sensors, and one on mobile111

sensors [2]. In the former group there are devices like magnetometers installed in the roadway below112

each on-street parking spot [27], or cameras on poles, overseeing parking lanes [28]. This approach113

produces availability information at a constant rate, but it is very expensive to deploy and maintain114

on a city-wide scale [4,29]. The other strategy exploits participatory or opportunistic crowd-sensing115

[30,31] via mobile apps [5] or probe vehicles [18]. Opportunistic mobile apps use smartphone sensors116

to estimate the subject state [32], or mode of transportation (e.g. driving or walking) and, from this117

information, to infer parking availability [22]. These apps are cheap to deploy, but require very high118

penetration rates to obtain an adequate amount of parking availability information [7]. On the other119

hand, probe vehicles, giving rise to Internet of Vehicles, can represent an advantageous trade-off between120

deployment costs and coverage of on-street parking monitoring. Many works proved that standard121

equipment on modern vehicles, like side-scanning ultrasonic sensors [18,33] or windshield-mounted122

cameras [34], can be used to detect free parking spaces along their routes, with a pretty high accuracy123

[17,18].124

Despite specific pros and cons, all these IoT-based approaches to monitor on-street parking125

data are characterised by issues in the quality of the data coming from sensors, which can present126
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a significant amount of noise and sudden variability. An empirical evidence of these problems can127

be drawn by the large experimental parking project SFPark project, ran in 2011 by the San Francisco,128

whose costs exceeded $46 million. In the project, about 8,000 parking spaces were equipped with129

specific sensors embedded in the asphalt, broadcasting availability information [27]. At the end of130

the project, many problems with the sensors were reported. As an example of misdetections, they131

found that "High levels of electromagnetic interference from overhead wires, underground utilities, and other132

sources made it more difficult than expected for the magnetometer sensors to properly detect vehicles. [. . . ]133

During three years of operation, interference remained pervasive and unpredictable." [16]. As for the abrupt134

changes in the values, changes observed at each time sample are reflected as steps in a square wave135

with a magnitude of about 10%. Spikes and changes of direction due to cars leaving and arriving at136

subsequent observation times or due to the reported electromagnetic interference are visible, too. This137

problem becomes exacerbated when considering road segments with a very small number of parking138

stalls, which are pretty common in the dataset from San Francisco that we used for our experiments,139

described in details in Section 3.1. Indeed, in that dataset, the average number of parking stalls per140

segment is 6, meaning that each parking/leaving event produces a change in the relative availability141

of about 17%. This scenario is in contrast with what is theoretically and experimentally known in the142

literature on parking, i.e. that there is a strong temporal correlation in the availability, which should143

not change drastically within around 30 minutes (e.g.: [9]). The consequences of this noise are twofold.144

On one hand, it becomes difficult to train a generalised model for meaningful predictions. On the145

other hand, it becomes also problematic to evaluate the prediction performances obtained by such a146

model, since the test set is noisy, too.147

2.2. Solutions for On-Street Parking Availability Predictions148

Focusing on researches conducted on predicting on-street availability, they are by far less than149

those of off-street, for two main reasons: (I) it is hard to find suitable datasets for the experiments,150

and (II) "the prediction of parking availability for on-street parking is more difficult than off-street parking151

since the variance of on-street parking is relatively higher"[35]. Zheng et al. [13] compared three different152

prediction techniques, Regression Trees, Neural Networks and Support Vector Regression, on the153

dataset from SFpark and from the municipality of Melbourne. Differently from current work, they154

applied SVR on raw data, with a single prediction horizon of 15 minutes. Rajabioun and Ioannou155

[10] proposed a technique to predict on-street parking availability based on the SFpark project data,156

by using multivariate autoregressive models considering both spatial and temporal correlations of157

parking availability. More recently, Monteiro and Ioannou [9] compared four different techniques to158

predict on-street parking availability, based on a new dataset coming from the municipality of Los159

Angeles. In [12] we preliminary investigated the idea of reducing noise in the data before running160

predictions. By means of a 2-step technique, including a specifically-customised Support Vector161

Regression smoother, we were able to outperform, in a statistically significant way, parking availability162

predictions obtained using standard regression techniques, as the one presented in [13]. In a subsequent163

paper ([36]) we extended that work by defining and assessing two smoothing techniques, characterised164

by significantly different computational requirements. Moreover, we considered also new prediction165

techniques, including one of those described in [9], to better evaluate the achievable performances of166

the entire solution. The solution we propose in the current paper includes the smoothing solutions167

defined in [36].168

It is worth noting that the most of the related works in the literature propose the use of advanced169

prediction techniques to get good predictions, with strong generalizability properties, like Support170

Vector Regression (SVR), Neural Networks [13], Autoregressive models [10], and so on. The drawback171

is that these methods have high computational requirements, making difficult to deploy these solutions172

to a nation-wide scale. For example, Zheng et al. [13] were unable to produce results with SVR on173

few hundreds of road segments in San Francisco, "due to the long computation time". Another key174

denominator of all these papers is that they use a number of models which is close or equal to the175
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number of road segments with parking stalls. This also leads to significant computational issues,176

making these solutions pretty hard to scale up to a nation-wide, or even to a city-wide level.177

To the best of our knowledge, the only paper investigating how to reduce the number of models178

needed to predict on-street parking availability is the one presented by Richter et al. [14] in 2014. In179

that paper, the authors evaluated different strategies to predict parking space availability, using a180

sample of data from the SFpark project, with the goal to minimise the number of prediction models,181

and thus the total space required to store data, by using different spatial and temporal clustering182

strategies. Nevertheless, that paper was meant for a totally different system architecture. Indeed,183

authors focused on proposing something suitable to be fitted in the on-board navigation device of184

a vehicle, meant as an off-line solution, based exclusively on historical data, without any dynamic185

update. Moreover, they designed the solution as a classification problem, predicting a range of parking186

availability (high, medium, low), rather than as a regression model, which can lead to much more187

refined solutions.188

3. An Analysis of an On-street Parking Availability Dataset189

Recurring dynamics, in time series, present an important opportunity to be exploited for190

prediction systems. Indeed, even if machine learning algorithms are capable of capturing these191

dynamics, by knowing in advance the existence of significant temporal regularities in the data, a192

system designer may develop more efficient processing pipelines. More in detail, in this scenario,193

many techniques are available in the literature to help reduce the size of the training sets and/or the194

number of needed prediction models, thus reducing the computational requirements of the processing195

pipeline. These techniques are often employed for traffic predictions (e.g.:[37,38]), but, to the best of our196

knowledge, they have been applied to on-street parking predictions only in one preliminary paper [14],197

also due to the lack of investigations focused on qualitative analyses of parking dynamics. Specifically,198

in [14], the presence of day-by-day, and weekdays/weekend recurring patterns was highlighted.199

As a consequence, in this paper we start by providing an analysis on real data about on-street200

parking availability dynamics, to verify and quantify the presence of recurring temporal patterns in201

the data. In the following, we describe the dataset we collected about on-street parking availability202

from the Municipality of San Francisco (USA). We made available a part of the which is an extension203

of the one provided in [21]. Then we discuss the analysis of these data, that allowed us to get some204

insights on parking dynamics, motivating the proposal presented in this paper.205

3.1. The Considered Dataset206

A common problem when conducting experimental evaluations for approaches dealing with207

the on-street parking domain is the lack of suitable datasets. Indeed, while many smart cities are208

collecting parking data (e.g. Santander (Spain) [39] or Los Angeles (USA) [9]), usually these data209

are not publicly available. For our study, on-street parking availability data was collected from210

the SFpark project [27]. In 2011 the San Francisco Municipal Transportation Agency started a large211

experimental smart parking project, called SFpark. The main focus of this project, whose costs exceeded212

$46 million, was the improvement of on-street parking management in San Francisco, mostly by means213

of demand-responsive price adjustments [27].214

One of the key points of the project was the collection of information about parking availability215

in six districts in San Francisco between 2011 and 2014. To this aim, about 8,000 parking spaces were216

equipped with specific sensors embedded in the asphalt of some pilot and control areas, periodically217

broadcasting availability information. Even though 8,000 equipped stalls is a remarkable number,218

this is less than 3% of the total number of on-street legal parking spaces in San Francisco [27]. These219

numbers make clear the problems and the costs to scale the instrumentation of on-street parking stalls220

to a city-wide dimension.221

The SFpark project made available a public REST API, returning the number of free parking222

spaces and total number of provided parking spaces, for each involved street segment in the pilot223
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Figure 1. Average autocorrelation values of all road segments during period 3.

areas. By exploiting those APIs, we collected parking availability data from middle of June, 2013224

to end of December, 2013. In some cases, due to malfunctions in the collection procedure, we lost225

some weeks, giving rise to three trunks of data. Thus, the final dataset we used in our investigation226

consists of three subsets of data including, respectively, 5 weeks (Period 1), 6 weeks (Period 2) and227

14 weeks (Period 3). Only road segments having at least 4 parking spaces are considered, in this228

work. Also, road segments that were never occupied for more than 85% of their capacity or showed229

missing/constant readings for more than 3 days were removed from the dataset, as we assumed that230

sensors were severely malfunctioning. The final number of considered segments is 321.231

As for the distribution of provided parking spaces per road segment2, the most frequent number232

of parking stalls per road segment is six, (8.8 % of the total), while the average is about 7.9. These233

numbers show that long parking lanes seldom exist in the evaluation regions and therefore each234

parking/leaving event has a relevant impact on the parking availability rate, which is defined as the235

ratio between the free and total stalls.236

The reader interested in further statistical details on the distribution of available/free parking237

spaces per segment is referred to our previous work [21].238

3.2. Recurring Patterns in the Dataset239

Starting from the observations in [14], we looked for temporal regularities in the data considering240

a temporal granularity at a day level. More in detail, we used the autocorrelation operator to detect241

recurring patterns for each road segment. This operator is used to evaluate at which lag a signal242

is maximally similar to itself. In presence of periodic dynamics, the autocorrelation plot will show243

strong local peaks, corresponding to lags at which the signal has a high recurrence. In our analysis,244

we searched for lags in a range from one day up to half the days available in each considered data245

collection period. This is to keep the number of superimposing samples sufficiently high to obtain246

reliable autocorrelation values. As an example, Figure 1 shows the plot of the average autocorrelation247

values for all road segments in San Francisco during Period 3. The spikes due to the recurring patterns248

at 7 days lag are clearly visible in the autocorrelation curve, indicating that the on-street parking249

phenomenon has a recurring dynamic with a period of one week.250

2 In the context of the SFpark project, a road segment (also named block face) is defined as one side of a road between two
intersections
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Figure 2. Autocorrelation frequency distribution over Period 1

Figure 3. Autocorrelation frequency distribution over Period 2

Considering the whole set of segments in the dataset and a 7 days lag, histograms shown in251

Figures 2, 3 and 4 highlight that the majority of the road segments present a consistent pattern repeating252

itself at 1 week period.253

Having confirmed that the most of the road segment has a recurring pattern over a 1 week lag,254

an immediate conclusion that may be derived from this analysis is that it could be possible to predict255

the occupancy value for the current time and day by replicating the observation collected at the same256

time during the same day of the preceding week. Should this strategy pay off, it would be useless to257

proceed with machine learning at all. A simple preliminary experiment testing this hypothesis was,258

therefore, conducted to assess the possibility that the naive strategy is adequate to predict occupancy259

rate. The boxplot of the RMSE value obtained using this strategy is shown in Figure 5 and it highlights260

that the prediction error, is more than two times the one found in [36], which used the same dataset.261

Moreover, also the distribution of the RMSE value is very large, making the predictions unreliable. As262

a consequence, even if recurring trends are present, there is still the need for more advanced prediction263

approaches. In the following we propose a parking availability prediction technique meant to exploit264

this characteristic, in terms of a strategy aimed at significantly reducing computational requirements.265

4. The Proposed Processing Pipeline266

Many solutions presented in the on-street parking prediction literature use a pipeline like the267

one shown in Figure 6 [9,10,13,35]. In detail, a dataset of historical parking availability contains the268

examples to train a supervised predictive model. Depending on the employed prediction technique,269

for each road segment, the dataset is windowed to generate a set of records, i.e. the features for the270
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Figure 4. Autocorrelation frequency distribution over Period 3
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Figure 5. Boxplot of the RMSE obtained by replicating the occupancy value, for each street segment, of
the observation found at the same day and time of the previous week
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Figure 6. The reference parking prediction processing pipeline, as adopted in many related works.
This pipeline is instantiated for each per road segment.

regressor, containing a sequence of parking availability information in the time interval [t − n, t],271

X = {At−n, ..., At−1, At}, referred to as history in the rest of the paper.272

A further point Y = At+k in the record represent the observed availability at t + k, which is the273

target value for regressor, referred to as prediction horizon. The regression technique is thus trained274

to learn, for each road segment, a model representing the relationship between the parking history275

[t− n, t] and the prediction horizon t + k on these examples. Specifically, the historical data can be276

windowed at the desired length (for example using a history of 60 minutes in the past and predict277

availability at 30 minutes in the future), to generate the examples (i.e. the training set) on top of which278

a regressor can be trained, as proposed by Zheng et al. [13]. Once a PGI user requests a prediction279

of parking availability at a given time t + k in the future for a given road segment, the PGI queries280

the prediction model with the parking data collected from sensors in the last n time frames for that281

segment, and obtains as output the availability prediction for t + k. Let us note that training data in282

this scenario can be either raw or smoothed. In the rest of the paper, this Reference Pipeline will be283

referred to as RP.284

The key limitation of RP is that a model is required for each segment to be monitored. Most of the285

related papers deal with a few hundred road segments, still highlighting computational issues (e.g.286

[13]). To give a reference, the map of the urban area of San Francisco from OpenStreetMap includes287

more than 200,000 road segments, making it very hard for the solutions proposed in the literature to288

scale up to a city-wide dimension. To face this issue, we propose a strategy, intended as an evolution289

of RP, by adding two pre-processing steps:290

1. Reduce the number of models, by clustering road segments with similar parking availability291

dynamics;292

2. Reduce the number of training examples, for each cluster, by selecting the n most informative293

ones.294

The key advantage of using a clustering technique is that the number of models to train grows295

sub-linearly with the number of road segments to monitor, with clear computational advantages. Thus,296

the final solution will be more likely to be able to scale to a city-wide level.297

As in [36], this pipeline can include also an optional step to smooth data, to compensate the298

potential presence of strong noise caused by the sensing solution.299

4.1. Clustering Road Segments300

The first step to exploit recurrent temporal dynamics in the data consists in aggregating road301

segments based on the correlations among their occupancy rate curves. Specifically, a cross-correlation302
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matrix C is computed considering the smoothed occupancy rate curves among all segments in the303

dataset. Being Ci,j the cross-correlation value between the i − th and the j− th road segments, the304

Pairwise Distance Matrix D is obtained by computing Di,j = 1− Ci,j, so that the higher the correlation,305

the lower the distance among the considered segments. On the basis of the data contained in D, the306

hierarchical clustering Ward Variance Minimization Algorithm is used to obtain the segments clusters.307

A Hierarchical clustering approach was selected as the number of clusters is not known a priori. The308

algorithm is used to iteratively group the road segments, by minimising the internal variance of each309

cluster [40], where the distance between two clusters u and v is defined as follows:310

d(u, v) =

√
|v|+ |s|

T
d(v, s)2 +

|v|+ |t|
T

d(v, t)2 − |v|
T

d(s, t)2 (1)

where u is the new cluster generated by merging two clusters s and t, v is every other cluster311

different from u, on which we compute the distance from u, and T = |v|+ |s|+ |t|.312

The output of the hierarchical clustering algorithm is a dendrogram, which can be cut at different313

levels of similarity, to get different groupings, where the higher the cutting value, the lower is the314

number of obtained clusters. Many strategies are described in the literature to select the cutting315

threshold, often being domain-dependent [41]. In our case, we adopted a simple criterion, using the316

default strategy implemented by both SciPy and Matlab, where the cutting threshold is computed as317

70% of the maximum linkage distance among clusters.318

Given the considered problem, through this clustering, we are able to group road segments that319

behave in a similar way, from an on-street parking dynamics point of view. The subsequent problem is320

how to train a single parking prediction model for each cluster, representative for all the segments in321

that cluster. Indeed, for a single cluster, if we simply merge together all the windowed examples from322

all the road segments belonging to that cluster, we will obtain a very large training set, containing a lot323

of very similar examples, as the road segments were grouped together on the basis of the similarity324

between their temporal dynamics: this will lead to very redundant datasets. While machine learning325

algorithms are, of course, designed to manage this situation, computational requirements can be326

greatly reduced if redundant information is filtered out of the dataset before the training phase. This is327

what we propose in the subsequent step.328

4.2. Training Set Reduction329

To obtain a sub-sample of the dataset in each cluster, that prioritises diversity with respect330

to the amount of data, we propose the use of the Kennard-Stone [15] algorithm. This is a widely331

used technique, designed to select the set of n most different examples from a given dataset, using332

the Euclidean distance as a reference measure. The rationale behind the use of the Kennard-Stone333

algorithm is to obtain a set of examples that is maximally informative for each cluster, rather than334

uniformly distributed like the set that could have been achieved by random sub-sampling. Indeed,335

this is also in line with the way Support Vector Machines represent prediction models, through the336

identification of informative support vectors.337

Thus, the procedure followed by the algorithm can be summarised as follows, for each cluster:338

• Find the two most separated points in the original training set;339

• For each candidate point, find the smallest distance to any already selected object;340

• Select the point which has the largest of these smallest distances.341

In this paper, we considered different values for n in order to evaluate how much the dataset used342

to train the model dedicated to each cluster can be reduced while limiting performance drops.343

4.3. Kalman filters344

As reported in the SFPark description, data provided by the sensors were affected by noise due345

to multiple factors. In our previous works, we considered, for evaluation purposes, the trend line,346
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computed as an SVR model fitting the raw data, as a target for predictions [12]. This is because,347

at the decision level, it is more important to understand the underlying behaviour of the temporal348

series rather than predicting the exact occupancy of parking slots in a specific road segment. This is349

particularly important in the considered case, as the reported number of parking slots is affected by350

noise so that, by considering the occupancy rate, strong jumps in the series may be caused by random351

events. The SVR model representing the underlying trend, however, is computed using the full curve352

so that, while it is possible to use it as a prediction target, it is not possible to use it to provide features353

to machine learning algorithms. In order to approximate the trend line and filter out as much noise as354

possible, the proposed technique makes use of online Kalman filters.355

Kalman filters are a well-known unsupervised approach to estimate systems’ states in presence of356

missing and noisy observations [19]. While being relatively simple in their formulation, they possess357

a number of practical advantages. First of all, Kalman filters can be trained in a fast way without358

assuming the use of big data. Also, once the model is trained, it does not require significant memory359

space nor computational power to be queried and response time is fast. It is often useful, in the field,360

as it can handle missing observations and it can be continuously updated as data arrives. Kalman361

filters estimate the state of a system in terms of affine functions of state transitions and observations.362

A Kalman filter is entirely defined by its initial transition matrix A and by its covariance matrix363

Q. Optionally, in the case of noisy observations, a covariance matrix R can be provided to describe364

Gaussian noise in the observations. These matrices are continuously updated as more data arrive365

and represent the model by themselves. It is therefore important to use domain knowledge, when366

designing Kalman filters, to provide an initial state that reasonably approximates the behaviour of the367

system, leaving fine tuning to training.368

In this work, we use the same configuration of the Kalman filters we described in [36] to369

compensate the problem that, in the case of on-street parking, raw observations are affected by370

random events that end up masking the underlying dynamics of street segments. The filter uses,371

for each road segment, the total number of parking spaces to estimate the Gaussian falloff of the372

true state probability space, centred on the last observation. To estimate the transition covariance373

matrix using the dynamics of each road segment, as observed in the training set, we introduce use the374

Expectation-Maximisation approach. The parameters are then used, using a sliding windows approach,375

to simulate online state estimation with a Kalman filter on each road segment. The reader is referred to376

[36] for more details about the Kalman filters configuration. An average RMSE of 0.05 between the377

Kalman curve and the trend curve was obtained on the dataset and an example comparison of the378

three curves is presented in Figure 7.379

5. The Empirical Evaluation380

In this section we describe the experimental protocol, in terms of experiment design and employed381

metrics. Then we present and discuss the obtained results.382

5.1. Experimental Design and Configurations383

To the best of our knowledge, in the literature there is no other work exploiting the dataset384

we used in our experiments that can be used as a benchmark. Rajabioun and Ioannou defined a385

spatio-temporal parking prediction model on data they collected from the SFPark APIs, but they used386

a different sampling rate and a different time frame of data collection w.r.t. to our dataset [10]. As387

a consequence, since no direct benchmark are available in the literature, to assess the effectiveness388

of the proposed approach, we had to define two baselines: the first one is trained on raw data, as389

described in the RP approach, while the second one is on smoothed data using Kalman filters. As390

for the regression technique to adopt, Zheng et al. compared the effectiveness of three solutions,391

namely Regression Trees, Support Vector Regression (SVR) (with RBF kernel and no hyper-parameter392

optimization), and Neural Networks (NN) on SFPark data. They found that the first two techniques393

performed very similarly, always outperforming NN. Consequently we chose to adopt SVR, in its394
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Figure 7. Comparison among raw data (red), SVR trend (blue) and Kalman online estimates (green)

implementation provided by the LibSVM library [42] to get the predictions, in combination with an395

ad-hoc technique to tune hyper-parameters. In particular, to find the optimal combination of C and γ396

parameters, we performed an inner cross validation on the training set, where 20% of the training set397

was used as development set. In this phase, we used a split validation protocol, so that the earlier part398

of the curve was considered to train the candidate models and the later part was used to evaluate the399

performance. The optimisation criterion we choose is the minimisation of the Root Mean Square Error400

(RMSE) on the development set and the ε parameter is fixed at the LibSVM default value (0.1). Once401

the optimal combination of the parameters was found, the final SVR model was trained using them on402

the full training set and evaluated on the test set.403

We considered a combination of three different amounts of historical data (5, 30 and 60 minutes)404

to predict parking availability with an horizon of 30 minutes. Other than this historical parking405

availability data, we also associated the TimeOfDay feature to each data sample. By clustering together406

road segments using the similarity of their temporal dynamics, the hypothesis is that the number of407

examples needed to train a prediction model for each cluster is reduced. To evaluate if the expected408

effect is present and its strength, we considered different sample sizes for the Kennard-Stone algorithm.409

Specifically, results obtained using 1000, 4000 and 16000 samples per cluster are presented in the410

following. As for the baselines, we tested the performance obtained both with the raw and with the411

Kalman features.412

5.2. Metrics413

The prediction quality for decision level systems is not influenced only by the estimated average414

error, but also by the expected stability of this error. When evaluating performances on the road415

segments included in the entire dataset, it is important to be able to assume that the predictor’s416

performance on all segments is approximately the same, so that uniform management strategies can417

be developed in an informed way. In this paper, we introduce a specific measure designed to take into418

account, other than the expected prediction error, its stability, too. In this way, solutions leading to less419

skewed distributions in RMSE values are preferred.420

More in detail, let’s consider the [0-0.2] interval to represent the distribution of RMSE values421

obtained on each road segment in the dataset. This interval is discretised in 10 bins so that the422

probability of each bin corresponds to the fraction of road segments for which the RMSE value falls423
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inside that bin. Formally, if x is vector of RMSE values and ni the number of road segments showing424

an RMSE value falling inside the i− th bin, the probability of the i− th bin is computed as425

p(bini) =
ni
|x| (2)

The Normalised Entropy HN is, then, defined as426

HN =
−∑i(p(bini) ln(p(bini))

ln(N)
(3)

where N is the total number of bins. Then, a quality measure based on the entropy of the RMSE427

distribution is defined as428

QH = 1− HN (4)

Similarly, a quality measure based on RMSE is defined as429

QRMSE = 1− RMSE (5)

The final quality measure F is defined as the harmonic mean of QH and QRMSE, to privilege430

solution offering the best balance between average RMSE and distribution compression.431

F =
2

1
QH

+ 1
QRMSE

(6)

5.3. Results432

The results of the two baseline prediction approaches are reported in Table 1, together with433

the RMSE, Entropy and F metrics, while the boxplots summarising the performance obtained with434

these configurations are shown in Figure 8. From these numbers, we can see that raw and smoothed435

solutions are very close in terms of RMSE. The introduction of Kalman filters reduces Entropy when436

using 5 minutes of historical data, and increase it at 60 minutes.437

The application of the hierarchical clustering produces the dendrogram presented in Figure 10,438

with an automatically computed value of 5 as the number of recommended clusters, following the439

criterion described in Section 4. Figure 11 shows the clusters distribution over the map of San Francisco440

provided by OpenStreetMap: while spatial patterns can still be observed, as it is to be expected, the441

image shows that similar temporal dynamics can occur in different parts of the city, highlighting that442

the same trained model can be used to manage spatially distant road segments.443

In the following we report the prediction performances of the proposal with the three considered444

values for the n parameter of the Kennard-Stone algorithm, namely 1000, 4000 and 16000. For the case445

of just 1000 training samples per cluster, a very minor fraction of the original dataset, both the tests446

with the raw and Kalman features are worse than the baselines: RMSE is just slightly higher than447

the reference values, but the entropy values highlight that the error distribution is larger, so that the448

reliability of the results is reduced for decision-level systems. The details of the results with a sample449

size of 1000 are shown in Table 2 while the corresponding boxplots are shown in Figure 9.450

The configuration using 4000 training samples per cluster shows that, for the setup using raw451

features, the performance is still far from the reference one. The Kalman-based solution, on the other452

hand, is stable across the considered history configurations and very close to the reference one. As453

a matter of fact, the clustered configuration, using 60 minutes as history, performs better than the454

baseline. This may be explained by considering that with fewer samples of higher quality, less noise455

is introduced in the dataset when the highest number of input features is used, as the Kalman filter456

already compensates for it. The details of results with a sample size of 4000 are shown in Table 3 while457

the corresponding boxplots are shown in Figure 12.458
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Figure 10. Dendrogram provided by the hierarchical clustering algorithm

Clusters
1

2

3

4

5

Figure 11. Geographic distribution of clusters among the considered road segments in the SFPark
dataset
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Figure 8. Boxplots of the baselines, considering one model for each road segment.

Feature Type History Entropy Mean RMSE F

Raw
5 min 0.56 0.07 0.59
30 min 0.53 0.07 0.62
60 min 0.56 0.07 0.59

Kalman
5 min 0.53 0.08 0.63
30 min 0.53 0.08 0.62
60 min 0.62 0.08 0.53

Table 1. Performance details of the baseline approaches, considering one model per road segment.
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Figure 9. Performance boxplots with clustered segments and 1000 sample size.

Feature Type History Entropy Mean RMSE F

Raw
5 min 0.66 0.08 0.50
30 min 0.62 0.08 0.53
60 min 0.68 0.10 0.47

Kalman
5 min 0.64 0.08 0.52
30 min 0.58 0.08 0.57
60 min 0.61 0.09 0.53

Table 2. Performance details with clustered segments and 1000 sample size.

In the final configuration, considering 16000 training samples per cluster selected by the459

Kennard-Stone algorithm, provides almost always the best performances. When using raw features,460

in the case of 30 minutes of history, it provides basically the same results of the baseline. In the two461

other cases, results are close but worse that the raw baseline. On the other hand, when considering the462

Kalman features, this configuration is able to provide exactly the same performances of the baseline,463

while using an amount of training data being two orders of magnitude smaller than the baseline.464

The details of the experiments considering a sample size of 16000 are shown in Table 4 while the465

corresponding boxplots are shown in Figure 13.466
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Figure 12. Performance boxplots with clustered segments and 4000 sample size.

Feature Type History Entropy Mean RMSE F

Raw
5 min 0.64 0.08 0.51
30 min 0.62 0.08 0.53
60 min 0.65 0.09 0.49

Kalman
5 min 0.53 0.08 0.62
30 min 0.54 0.08 0.62
60 min 0.54 0.08 0.62

Table 3. Performance details with clustered segments and 4000 sample size.
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Figure 13. Performance boxplots with clustered segments and 16000 sample size.

Feature Type History Entropy Mean RMSE F

Raw
5 min 0.65 0.08 0.51
30 min 0.54 0.08 0.62
60 min 0.63 0.08 0.52

Kalman
5 min 0.53 0.08 0.62
30 min 0.53 0.08 0.62
60 min 0.53 0.08 0.62

Table 4. Performance details with clustered segments and 16000 sample size.
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6. Discussion and Conclusions467

Improving the effectiveness of on-street parking availability predictions is a key issue for Parking468

Guidance and Information (PGI) systems. The most of on-street parking availability prediction469

solutions presented in the literature are characterised by significant computational requirements, by470

learning a model for each road segment offering parking spaces, with considerable scalability issues.471

The investigation we presented in this paper aims at evaluating if and how recurrent temporal472

patterns may be exploited to reduce the computational requirements of predictive approaches for473

on-street parking availability. Firstly, we have provided a quantitative and qualitative analysis of474

recurring patterns in the data collected from stationary sensors employed in a large experimental475

project in the Municipality of San Francisco (USA). This analysis highlighted that there are notable476

temporal recurrences in on-street parking availability dynamics, with an evident recurring pattern at 7477

days lags. Anyhow, a naive replication strategy, where the parking availability prediction is obtained478

by repeating the situation sensed 7 days before, is not sufficient to obtain an adequate quality of the479

predictions.480

We have, therefore, presented a processing pipeline to predict parking availability, meant to481

exploit these recurrences to lower computational requirements, by including clustering and training482

set reduction techniques. In particular, the clustering step is designed to group together segments with483

the similar temporal dynamics so that a shared model could be trained to predict parking availability484

for all the segments in the cluster. This implies that, in comparison with the strategy employed in485

similar works, training one model for each road segment, the number of models needed to cover the486

area of interest does not increase linearly with the number of segments, reaching volumes that may487

become hard to manage when large cities are considered. This provides important advantages from488

the scalability point of view: indeed, using temporal clustering allows to group together road segments489

that, although possibly far from a spatial point of view, exhibit similar dynamic occupancy patterns.490

This may be caused, for example, by qualitatively similar contextual situations, like the presence of491

residential or commercial areas.492

Grouping road segments having similar (recurrent) occupancy patterns has the consequence that,493

when considering the windowed samples from all the segments included in a cluster, to form a single494

training set, many of these samples will be very similar to each other. To reduce the computational495

complexity of the training step, given a large dataset with redundant information, we applied a data496

reduction approach, using the Kennard-Stone algorithm, and investigated at which size the considered497

configurations of our system reach comparable performances with the ones obtained with the baseline498

approach.499

The Kennard-Stone algorithm and the prediction quality can be significantly influenced by the500

amount of noise in the features. For this reason, we introduced an online Kalman filter to smooth the501

raw curve and reduce the influence of random events causing strong changes in the raw curve. The502

results we presented show that, with the Kalman-filtered data, the number of samples to be selected503

with the Kennard-Stone algorithm to reach the performance of the baseline is lower than the number504

needed using the raw features. This combination of temporal clustering, online filtering and data505

reduction techniques, therefore, allows to reach performances comparable to the ones obtained with506

the baseline approach while using a significantly lower number of models.507

We conducted an experimental evaluation on a real on-street parking availability dataset from 321508

road segments, in San Francisco, comparing our pipeline against a baseline where we trained a SVR509

model for each segment over 6,048 time frames, both for raw and filtered data. We had 5 clusters, and510

thus 5 models vs 321 of the baseline. Result shown that performances comparable with the baseline511

approach can be reached, when raw features are used, by selecting, using the Kennard-Stone algorithm,512

16000 examples from the dataset obtained by merging all the data samples from all the roads included513

in a single cluster. Baseline performances, using Kalman-filtered features, can be reached by selecting514

4000 examples, suggesting that a limited number of samples that are less affected by noise is sufficient515

to train supervised models when recurring patterns are present and shared among road segments.516
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This means that we had 4,000 x 5= 20,000 training examples vs 6,048 x 321= 1,941,408 of the original517

dataset, thus significantly reducing the computational complexity.518

The limitations of this study are related to the dataset representing the specific situation of the519

San Francisco urban area, which may exhibit characteristics not found in other cities. The preliminary520

step of the procedure we followed here, using the autocorrelation operator to check the presence521

of recurring temporal dynamics in the considered road segments, remains necessary to deploy the522

approach in other situations. Potential differences may emerge due to different extensions of the523

considered urban areas or to specific geographical characteristics, as well as to the socio-economical524

background of the considered city, which may cause non-periodic recurrences that would not be525

detected through autocorrelation. Also, the temporal extension of the data available through the526

SFPark project is relatively limited and does not allow us to take into account possible changes due527

to seasonal variations through the whole year. Future work will, therefore, consist of re-applying528

the procedure to datasets collected from different cities and covering longer time periods, in order to529

evaluate, for example, if new clusters and/or new models should be trained to cover different times of530

the year, how long these time spans should be, and for how long a recurring pattern is present in the531

series.532

We believe that the results of this work can be exploited for further replications/evolutions of the533

proposed pipeline. Indeed, as future work, we foresee the possibility that the obtained results can be534

improved by employing more advanced machine learning techniques, like CNN or LSTM on top of535

the proposed pipeline. Moreover, it would be interesting to replicate the experiment on other parking536

availability datasets, to understand if and how these recurrent patterns are common in other urban537

areas.538

Acknowledgments: We gratefully thank Yuri Attanasio for the help in the conduction of the experiments.539
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