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Abstract
The present study performs an investigation on several issues
concerning the automatic detection of prominences. Its aim is
to offer a better understanding of the prominence phenomenon
in order to be able to improve existent prominence detection
systems. The study is threefold: first, the presence of hidden
dynamics in the sequence of prominent and non-prominent syl-
lables is tested by comparing results obtained with CRFs and
LDCRFs. Second, the size of the context to be taken into ac-
count when determining prominence was examined and third, a
new set of features was investigated. The obtained results show
that LDCRFs systematically outperform CRFs, that a context of
three syllables is generally sufficient for prominence detection
and that syllable length is a useful feature to include. Also, new
features concerning pitch movements we introduced can substi-
tute adequately heuristic measures used in previous works.
Index Terms: syllabic prominence, conditional random fields

1. Introduction
Linguistic research has concentrated for a long time on the in-
vestigation of syllabic prominence. Although there is no con-
sensus regarding the definition of syllabic prominence nor on
the appropriate annotation methodology, it is common, espe-
cially in automatic annotation studies, to describe prominent
syllables in generic terms as syllables standing out with respect
to their context and to annotate them by means of a binary no-
tation (prominent/non-prominent). This type of annotation is
generally preferred because it offers a simple method to evalu-
ate the performance obtained by automatic approaches. Promi-
nence detection has been the subject of a wide number of in-
vestigations in the past [1, 2, 3, 4, 5]. Automatic prominence
detection systems are based mainly on rule-based approaches
as machine learning techniques can make it difficult to under-
stand how a certain performance was reached by the underlying
statistical model. Although supervised approaches were used
in this work, absolute performance was considered a secondary
objective with respect to the possibility of using machine learn-
ing to collect data useful to improve current rule-based anno-
tation systems based on a linguistic, as opposed to a statistic,
background.

Conditional Random Fields (CRF) [6] are a class of dis-
criminative models used for sequence segmentation and label-
ing which are designed to maximize the conditional probabil-
ity of the labels given the sequence of observations. The use
of CRFs is now well established as they have been success-
fully applied to a wide range of scientific fields, including nat-
ural language processing and speech analysis tasks. In the case
of prominence annotation, it was shown that CRFs outperform

HMMs in the task of predicting pitch accents at word level with
a combination of acoustical and syntactic features [7]. CRFs
were also used to investigate pitch accent detection along with
the realization of givenness and focus at word level by employ-
ing lexical and acoustic features [8]. Differently from these pre-
vious studies, in this work we will make use of acoustic features
only and we will concentrate on the syllable level.

There are three main ways in which this particular kind of
sequence labeling models can be applied to the problem of au-
tomatic syllabic prominence annotation in order to guide further
investigation towards a better rule-based annotation algorithm.
Structural differences analysis among classifiers, paired with
performance comparison, gives information regarding the inter-
actions among the features. Feature sets comparison and mul-
tiple contexts comparison estimate the predictive power of the
considered features and the amount of context that should be
taken into account. In this work, we apply these three different
kinds of analysis by employing different classifiers, feature sets
and context extensions.

2. Materials
We used an Italian corpus containing read numbers and an En-
glish corpus containing read sentences. The Italian corpus con-
sists of a subset of the SPEECON corpus [9] that has been used
to evaluate the system presented in [3, 5]. The English cor-
pus consists of a subset of the TIMIT corpus that has been
used to evaluate the system presented in [2]. Both subsets
were manually segmented into syllables and annotated by an
expert linguist using a binary notation for syllabic prominences.
The SPEECON subset contains 288 utterances (15 minutes of
speaking time) containing at least 5 syllables (mean: 15, total:
4265). The TIMIT subset contains 382 utterances (17 minutes
of speaking time) containing at least 4 syllables (mean: 12.51,
total: 4780).

3. Latent-Dynamic Conditional Random
Fields

CRFs are designed to capture inter-class relationships by max-
imizing the conditional probability of the sequence of labels
from a sequence of observations. Given a set of weights esti-
mated during training λ, the sequence of labels Y and the se-
quence of observations X , a Linear Chain Conditional Random
Field estimates P (Y |X) as follows

P (Y |X,λ) =
1

Z(X)
exp

(
K∑

k=1

λkfk(yt, yt−1, xt)

)
(1)



Figure 1: Graphical representation of a Conditional Random
Field and a Latent-Dynamics Conditional Random Field.

where Z(X) is a normalization constant, N is the number
of observations and fk(yt, yt−1, xt) represents either a state
feature function or a transition feature function. State feature
functions describe the relation between observation/label pairs
while transition feature functions describe the relation between
observations and transitions from one state to another. Since the
definition of feature functions includes a vector of observations
in the third term, the set of feature functions can be computed
over an arbitarily extended context of surrounding observations
W . CRFs are limited as they can model inter-class relationships
but cannot model intra-class dynamics. Latent Dynamic Condi-
tional Random Fields (LDCRF) [10] are an extension of CRFs
designed to introduce hidden variables in the model, in order
to capture both kinds of dynamics. Hidden states represent a
sequence of unobserved variables H and are used to define the
following latent conditional model:

P (Y |X,λ) =
∑
H

P (Y |H,X, λ)P (H|X,λ) (2)

The above model allows only disjoint sets of hidden states
for each class label. Therefore, each label yj has an associated
setHyj of hidden states withHyi ∩Hyj = ∅ for i 6= j, making
it is possible to rewrite Equation 2 as:

P (Y |X,λ) =
∑

h∈Hyj

P (H|X,λ) (3)

The conditional probability of the hidden states given the
set of observations and weights can then be formulated as for
the CRF model:

P (H|X,λ) =
1

Z(X)
exp

(
K∑

k=1

λkfk(ht, ht−1, xt)

)
(4)

A graphical comparison between a CRF and an LDCRF is
shown in Figure 1. In the LDCRF model there is no longer a
direct connection between observations and labels due to the
introduction of a layer of hidden variables. Since the labels are
disconnected from the observations, they are considered to be
conditionally independent, given the hidden states.

Although CRFs have been used in the past to automatically
detect prominent syllables, there are no studies, to our knowl-
edge, aimed at evaluating the performance of LDCRFs on the
same task.

4. Feature sets
Features related to energy, segments durations and internal pitch
movements for each syllable are usually employed in the auto-
matic prominence annotation task and the particularly important

role that syllable nuclei play in the detection of prominent sylla-
bles is widely recognized in the literature. In [1], the mean am-
plitude inside the syllable nucleus ∆A and the nucleus length
∆Tn were combined into an evidence variable as follows:

Ev = ∆A∆Tn (5)
After computing an Ev value for each syllable, local max-

ima in the sequence of evidence variables were marked as
prominent. Since, in the literature concerning automatic anno-
tation of syllabic prominence, a great importance has been as-
signed to ∆A and ∆Tn, these two features are always included
in the feature sets we used in the experiments presented in this
paper. Given the manual segmentation into syllables, nuclei on-
sets and offsets are estimated by taking the energy peak inside
the syllable and computing the -3dB band.

Energy and duration do not account for prominences caused
by pitch movements through the nucleus. In [4], a syllable was
automatically marked as prominent if a rising pitch movement
exceeding a threshold was detected. In [3], the same concept
was implemented as an integration of the approach proposed in
[1] with a pitch movement dependent parameter. Equation 5
was then reformulated as

Ev = m∆A∆Tn (6)
where m represented a heuristically computed penaliza-

tion factor for syllables that do not exhibit a rising movement
through the nucleus. Them parameter is included in the feature
sets F3 and F4.

The previous two attempts to use pitch features in an auto-
matic system for prominence annotation were based on heuris-
tics and assumed that only rising pitch movements had an ef-
fect on prominence perception. In this paper, we introduce a
different parameter that is intended to give an account of pitch
movements in a more generic term, by using the concept of glis-
sando, or dynamic tone. Let Te be the time interval in which a
pitch movement is realized and the rate of change expressed in
ST/s, the threshold over which a tone is perceived as dynamic
instead of static was estimated in [11] to be 0.16/T 2

e . Later on
Mertens, in [12], found that an automatic pitch curve styliza-
tion algorithm based on a tonal perception model, taking glis-
sandos into account, gave results more similar to the ones pro-
vided by human annotators by setting the glissando threshold
at 0.32/T 2

e . In this paper, we introduce a new feature related
to the occurrence of glissandos through the nucleus that is in-
tended to substitute the m parameter. After stylizing the pitch
curve using the basic version of the algorithm presented in [13],
we consider the position of the energy peak inside the manu-
ally marked syllable and select the linear segment that crosses
it. The two extrema of the segment, s1 and s2, are then taken
as reference to compute the rate of change of the movement
crossing the nucleus. If the s1 and s2 points fall outside the syl-
lable nucleus, their position is moved respectively to the point
where the segment crosses the nucleus onset or offset. A Γs1,s2

parameter is then computed as follows

Γs1,s2 =


1 if Vs1,s2 >

0.32
T2
e

Vs1,s2
T2
e

0.32
otherwise

(7)

where Vs1,s2 is the absolute rate of change of the pitch ex-
cursion in ST/s. While a tonal movement exceeding Mertens’
threshold will be given 1 as value, movements below the thresh-
old will be described with a glissando likelihood value com-
prised between 0 and 1. The Γs1,s2 parameter has a stronger



theoretical background with respect to them parameter and is to
be preferred because it avoids assumptions regarding the magni-
tude of pitch change that is needed to introduce a prominence,
considering only the presence of a glissando. The Γs1,s2 pa-
rameter reacts both to rising and descending movements and is
based on results obtained by previous investigations regarding
dynamic tones perception.

We also evaluate the impact of two other features extracted
from each syllable: the total duration ∆Ts and the internal ra-
tio between voiced and total duration of the syllable V/Ts. ∆Ts

was included as it is common, in the literature, to find documen-
tation regarding the importance of duration features in prosodic
analysis while V/Ts is intended to give an account of the con-
sidered syllable structure. These two features are included in
the features set F5. A detailed description of the composition of
the three feature sets tested in this work is shown in Table 1.

Table 1: Feature sets composition
∆A ∆Tn m Γs1,s2 ∆Ts V/Ts

F3 X X X
F4 X X X X
F5 X X X X X

5. Results
Each classifier was tested on the SPEECON and on the TIMIT
subset. For each features set, both classifiers were tested by
varying the context extension for building the feature functions
from a minimum of 1, which considers only the two neighbor-
ing syllables, to a maximum of 5. Performance is measured
in terms of F-measure (Prominent class as TRUE) and the test
protocol is 10-fold cross validation. The summary of the results
obtained on the SPEECON subset is reported in Table 2 while
results obtained on the TIMIT subset are detailed in Table 3.

Table 2: F-measures obtained on the SPEECON subsets. The
best performance obtained with each features set by the two
classifiers is marked in bold.

CRF LDCRF
F3 F4 F5 F3 F4 F5

W1 65.12 79.79 82.76 65.09 79.69 82.75
W2 67.10 82.08 84.30 75.10 84.66 86.32
W3 68.00 83.46 85.77 75.39 85.58 87.82
W4 68.27 84.05 86.15 76.12 85.71 87.66
W5 68.94 84.07 86.08 76.55 85.54 87.85

Table 3: F-measures obtained on the TIMIT subset. The best
performance obtained with each features set by the two classi-
fiers is marked in bold.

CRF LDCRF
F3 F4 F5 F3 F4 F5

W1 53.43 68.50 68.91 53.52 68.56 68.90
W2 60.47 71.71 70.96 72.03 78.01 77.24
W3 60.43 71.91 71.54 72.52 77.83 77.52
W4 61.46 72.07 72.03 72.12 77.86 77.26
W5 61.76 72.36 72.48 72.12 77.83 77.21

The statistical significance of the differences between the

obtained performances was evaluated by means of a McNemar
test. To evaluate the performance of the LDCRF with respect
to the CRF, we compared, for each features set, the results ob-
tained by the best CRF with the ones obtained by the best LD-
CRF. The differences were found to be statistically significant
in all cases (p < 0.01).

To evaluate the performance difference obtained with the
various feature sets, we compared the performance of the best
LDCRF from each features set with the performance of the best
LDCRFs from the other feature sets. While on the SPEECON
subset the differences were found to be always significant (p <
0.001), on the TIMIT subset the differences F3/F4 and F3/F5
were statistically significant (p < 0.001) while the difference
F4/F5 was not significant.

To evaluate the influence of the context extension, we com-
pared, for each corpus, classifier and features set, the pairwise
combinations of values of the W parameter. While on the
TIMIT subset only comparisons involving W = 1 were found
to be significant, tests on the SPEECON subset yielded a differ-
ent situation, summarized in Table 4.

Table 4: Statistical significance tests on the SPEECON corpus,
for different pairs of values for the W parameter. Check marks
indicate significant differences.

Window length pairs
2/3 2/4 2/5 3/4 3/5 4/5

CRF
F3
F4 X X X
F5 X X X

LDCRF
F3 X X
F4 X
F5 X X X

Both LDCRFs and CRFs applied to the SPEECON subset
outperform the systems presented in [3], in which 73.3% F-
measure was reported, and in [5], where 75.1% F-measure was
reported. Concerning the TIMIT corpus, in [2] an error rate of
18.64% was reported. If we take into account the performance
of the LDCRF that obtained the best results on TIMIT (F4/W2),
the error rate is 16.32%. A graphical summary of the presented
tests is shown in Figure 2.

6. Discussion
Results offer insight on three different issues regarding promi-
nence detection: model performance, context influence and fea-
ture sets. We found that LDCRFs perform systematically better
than CRFs. On the SPEECON subset, every LDCRF performs
better than its direct CRF counterpart while on TIMIT this ef-
fect is even more evident as the lowest performance obtained by
an LDCRF is similar to the best CRF performance. The main
difference between the two classifiers lies in the presence, in
the LDCRF model, of hidden states. This difference is critical
as it allows the classifier to learn complex dynamics that are
not explicitly described by the raw sequence of observations.
In order to better understand these results two observations are
important, in our opinion: (1) the advantage of LDCRFs is that
they detect hidden dynamics inside a single class and (2) the bi-
nary annotation mainly produces sequences of non-prominent
syllables separated by prominent syllables. A possible cause of
LDCRFs outperforming CRFs in this task could, therefore, be
that a hidden dynamic may lie in the sequence of non-prominent
syllables.
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Figure 2: Summary of the obtained performances for each combination of classifier, features set and context extension on the two test
corpora.

By varying the context extension, we observed that on the
SPEECON subset significant differences among various tests
can be found consistently up to a three syllables context. On the
TIMIT subset a context window of two syllables seems to be
sufficient to achieve maximum performance. This is in contrast
with approaches used in earlier automatic prominence annota-
tion [1], but it is consistent with more recent findings regarding
context extension [4].

By varying the composition of the features set, we found
that syllable length is a particularly important feature as the
comparison between the best LDCRF using the F3 features
set is always inferior to the performance obtained by the best
LDCRF using the F4 features set in a statistically significant
way. Since the F5 features set enabled the LDCRF to obtain
better performance with respect to the F4 features set on the
SPEECON subset only, we understand that the combination of
the Γs1,s2 and V/Ts features contains at least the same amount
of information as the m parameter, while having a better theo-
retical background.

7. Conclusions

We investigated the problem of automatic syllabic prominence
detection using two classifiers designed to label sequences of
data: the CRF and the LDCRF. Other than the comparison be-
tween the two classifiers, we studied the differences between
three different feature sets and the impact that context extension
has on the results. The systematically higher performance of
LDCRFs with respect to CRFs suggests the presence of hidden
dynamics in the analyzed sequences that may influence promi-
nence distribution over the utterance. From our experiments
on context extension, we found indications that a window of 2-
3 neighboring syllables contains the necessary amount of data
that allows an automatic annotation algorithm to obtain good
performance in terms of F-measure. Lastly, we compared the
performance of the best classifiers with different feature sets
observing a significant importance of syllable length. We also
observed that the combination of two new features substituting
heuristic approaches to pitch movements description improved
the performance of the classifier on the SPEECON subset and
did not lower the performance on the TIMIT subset.
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