251 research outputs found

    POPULATION GENETICS AND MALE SOCIAL BEHAVIOR IN THE AUSTRALIAN SMALL CARPENTER BEE, CERATINA AUSTRALENSIS

    Get PDF
    Small carpenter bees (Xylocopinae: Ceratinini) in the genus Ceratina are a cosmopolitan group of stem nesting bees. All Ceratina show a degree of mutual tolerance for nestmates as they nest together in pre-dispersal assemblages and display extended maternal care. Many Ceratina also nest facultatively with multiple females per nest. Males usually disperse before the beginning of the reproductive season. Ceratina have emerged as model organisms to study the evolution of social behavior within the Hymenoptera (ants, bees and wasps). As hymenopteran sex is determined by the haplodiploid sex determination system wherein males are haploid and females are diploid, the result is a relatedness asymmetry between brothers and sisters, whereby sisters share a greater proportion of similar genes compared to brothers. Kin selection theory predicts that daughters are more likely to help rear sisters compared to brothers and is used to explain the prevalence of social behavior within the Hymenoptera. Here the relatedness between populations and within nests of the Australian small carpenter bee Ceratina (neoceratina) australensis is examined with the use 8 polymorphic microsatellite loci. In chapter 1, the eight microsatellite loci are described and applied to three known populations of Ceratina australensis within Australia. Chapter 1 provides evidence for migration from north to south following the river systems of the Murray-Darling River Basin (MRDB). The MRDB has undergone substantial anthropogenic alterations to the natural vegetation communities since European settlement. Chapter 1 provides evidence for the hypothesis that C. australensis expansion into Australia has been aided by the introduction of pithy stemmed plants and establishes how patterns of dispersal can affect the social biology of this species. Chapter 2 deals directly with understanding the presence of male bees within nests of C. australensis that were found predominately, but not exclusively, within the most genetically homogenous population from chapter 1. The existence of inbreeding was not confirmed by visual inspection of genotypes or relatedness estimates between male adults and female offspring. Nests with males had lower brood survivorship compared to solitary nests but reproductive females in nests with males did not have significantly lower fitness compared to reproductive females in other nest types. The inclusive fitness of non-reproductive females was significantly lower than the fitness of reproductive females and the inclusive fitness of males was zero. I speculate that males were potentially delaying reproduction though it is odd that males were not forcefully removed by females. These findings underscore the importance of factors related to the timing of dispersal within the study of social insects

    Cervical Vascular and Upper Airway Asymmetry in Velo-Cardio-Facial Syndrome: Correlation of Nasopharyngoscopy With MRA

    Get PDF
    Purpose Velo-cardio-facial syndrome (VCFS), the most common genetic syndrome causing cleft palate, is associated with internal carotid and vertebral artery anomalies, as well as upper airway asymmetry. Medially displaced internal carotid arteries, often immediately submucosal, present a risk of vascular injury during pharyngeal flap surgery for velopharyngeal insufficiency (VPI). We evaluate the frequency and spectrum of cervical vascular anomalies in a large cohort of VCFS patients correlating MRA with nasopharyngolaryngoscopy in detecting at risk carotid arteries. Furthermore, we assess the relationship with respect to laterality between cervical vascular patterns and the asymmetric abnormalities of these subjects’ upper airways. Methods Cervical MRAs of 86 subjects with VCFS and 50 control subjects were independently reviewed by three neuroradiologists. The course of the internal carotid and vertebral arteries was identified within the pharyngeal soft tissues. Medial deviation, level of bifurcation, dominance, anomalous origin, and vessel tortuosity were recorded. Nasopharyngoscopy examinations were available for retrospective review in 43 patients and were assessed for palatal and posterior pharyngeal wall symmetry, true vocal cord motion and size, and for the presence or absence of carotid pulsations. The endoscopic findings were compared with MRA results. Results Of the 86 subjects, 80 (93%) had one or more vascular anomalies. 42 subjects (49%) were found to have medial deviation of at least one internal carotid artery. In 24 subjects (28%) the anomalous internal carotid artery was directly submucosal; four of these were bilateral (5% of the total sample, 17% of those with a submucosal internal carotid). Other carotid anomalies included low carotid bifurcation (44 subjects or 51%), anomalous origin of the right common carotid (32 cases, or 37%), and two cases of internal carotid agenesis/hypoplasia. Vertebral artery anomalies included vessel tortuosity (34 cases, or 40%), hypoplasia (10 cases, or 12%), looping (4 cases, or 5%), and one case of a double left vertebral artery. Though patients in our study showed an asymmetric distribution of vascular anomalies, no association was found between the laterality of palatal motion, pharyngeal fullness, or laryngeal movement and structure with ipsilateral vertebral or carotid artery anomalies. Of the 33 pulsatile carotid arteries visualized at nasopharyngoscopy, only nine were found to be submucosal on MRA. In contrast, 11 submucosal carotid arteries confirmed at MRA demonstrated no visible pulsations. Positive and negative predictive values of pulsative arteries seen endoscopically for MRA confirmation of a submucosal carotid course was 27% and 79% respectively. Conclusions Carotid and vertebral artery anomalies are common in VCFS including marked medial deviation of the internal carotid artery in close proximity to the donor site for pharyngeal flap surgery. Lack of correlation between laterality of vascular anomalies and upper airway structural asymmetry in VCFS does not support the hypothesis that palatal, pharyngeal, and laryngeal anomalies are due to secondary developmental sequences caused by in utero vascular insufficiency. The presence or absence of carotid pulsations seen by nasopharyngoscopy does not correlate with the carotid arterial depth identified on MRA. Furthermore, identification of the relative medial–lateral retropharyngeal position of a submucosal carotid affords the opportunity to modify the surgical approach. These findings further support the routine use of pre-operative neck MRA in VCFS patients in surgical planning

    Ice sheet contributions to future sea-level rise from structured expert judgment

    Get PDF
    Despite considerable advances in process understanding, numerical modeling, and the observational record of ice sheet contributions to global mean sea-level rise (SLR) since the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change, severe limitations remain in the predictive capability of ice sheet models. As a consequence, the potential contributions of ice sheets remain the largest source of uncertainty in projecting future SLR. Here, we report the findings of a structured expert judgement study, using unique techniques for modeling correlations between inter- and intra-ice sheet processes and their tail dependences. We find that since the AR5, expert uncertainty has grown, in particular because of uncertain ice dynamic effects. For a +2 °C temperature scenario consistent with the Paris Agreement, we obtain a median estimate of a 26 cm SLR contribution by 2100, with a 95th percentile value of 81 cm. For a +5 °C temperature scenario more consistent with unchecked emissions growth, the corresponding values are 51 and 178 cm, respectively. Inclusion of thermal expansion and glacier contributions results in a global total SLR estimate that exceeds 2 m at the 95th percentile. Our findings support the use of scenarios of 21st century global total SLR exceeding 2 m for planning purposes. Beyond 2100, uncertainty and projected SLR increase rapidly. The 95th percentile ice sheet contribution by 2200, for the +5 °C scenario, is 7.5 m as a result of instabilities coming into play in both West and East Antarctica. Introducing process correlations and tail dependences increases estimates by roughly 15%.</p

    Spectral Typing of Late Type Stellar Companions to Young Stars from Low Dispersion Near-Infrared Integral Field Unit Data

    Get PDF
    We used the Project 1640 near-infrared coronagraph and integral field spectrograph to observe 19 young solar type stars. Five of these stars are known binary stars and we detected the late-type secondaries and were able to measure their JH spectra with a resolution of R\sim30. The reduced, extracted, and calibrated spectra were compared to template spectra from the IRTF spectral library. With this comparison we test the accuracy and consistency of spectral type determination with the low-resolution near-infrared spectra from P1640. Additionally, we determine effective temperature and surface gravity of the companions by fitting synthetic spectra calculated with the PHOENIX model atmosphere code. We also present several new epochs of astrometry of each of the systems. Together these data increase our knowledge and understanding of the stellar make up of these systems. In addition to the astronomical results, the analysis presented helps validate the Project 1640 data reduction and spectral extraction processes and the utility of low-resolution, near-infrared spectra for characterizing late-type companions in multiple systems.Comment: Accepted to Astronomical Journal, 25 pages, 8 figure

    Constraints on the architecture of the HD 95086 planetary system with the Gemini Planet Imager

    Full text link
    We present astrometric monitoring of the young exoplanet HD 95086 b obtained with the Gemini Planet Imager between 2013 and 2016. A small but significant position angle change is detected at constant separation; the orbital motion is confirmed with literature measurements. Efficient Monte Carlo techniques place preliminary constraints on the orbital parameters of HD 95086 b. With 68% confidence, a semimajor axis of 61.7^{+20.7}_{-8.4} au and an inclination of 153.0^{+9.7}_{-13.5} deg are favored, with eccentricity less than 0.21. Under the assumption of a co-planar planet-disk system, the periastron of HD 95086 b is beyond 51 au with 68% confidence. Therefore HD 95086 b cannot carve the entire gap inferred from the measured infrared excess in the SED of HD 95086. We use our sensitivity to additional planets to discuss specific scenarios presented in the literature to explain the geometry of the debris belts. We suggest that either two planets on moderately eccentric orbits or three to four planets with inhomogeneous masses and orbital properties are possible. The sensitivity to additional planetary companions within the observations presented in this study can be used to help further constrain future dynamical simulations of the planet-disk system.Comment: Accepted for publication in ApJ

    Improving and Assessing Planet Sensitivity of the GPI Exoplanet Survey with a Forward Model Matched Filter

    Full text link
    We present a new matched filter algorithm for direct detection of point sources in the immediate vicinity of bright stars. The stellar Point Spread Function (PSF) is first subtracted using a Karhunen-Lo\'eve Image Processing (KLIP) algorithm with Angular and Spectral Differential Imaging (ADI and SDI). The KLIP-induced distortion of the astrophysical signal is included in the matched filter template by computing a forward model of the PSF at every position in the image. To optimize the performance of the algorithm, we conduct extensive planet injection and recovery tests and tune the exoplanet spectra template and KLIP reduction aggressiveness to maximize the Signal-to-Noise Ratio (SNR) of the recovered planets. We show that only two spectral templates are necessary to recover any young Jovian exoplanets with minimal SNR loss. We also developed a complete pipeline for the automated detection of point source candidates, the calculation of Receiver Operating Characteristics (ROC), false positives based contrast curves, and completeness contours. We process in a uniform manner more than 330 datasets from the Gemini Planet Imager Exoplanet Survey (GPIES) and assess GPI typical sensitivity as a function of the star and the hypothetical companion spectral type. This work allows for the first time a comparison of different detection algorithms at a survey scale accounting for both planet completeness and false positive rate. We show that the new forward model matched filter allows the detection of 50%50\% fainter objects than a conventional cross-correlation technique with a Gaussian PSF template for the same false positive rate.Comment: ApJ accepte

    Performance of the Gemini Planet Imager Non-Redundant Mask and spectroscopy of two close-separation binaries HR 2690 and HD 142527

    Full text link
    The Gemini Planet Imager (GPI) contains a 10-hole non-redundant mask (NRM), enabling interferometric resolution in complement to its coronagraphic capabilities. The NRM operates both in spectroscopic (integral field spectrograph, henceforth IFS) and polarimetric configurations. NRM observations were taken between 2013 and 2016 to characterize its performance. Most observations were taken in spectroscopic mode with the goal of obtaining precise astrometry and spectroscopy of faint companions to bright stars. We find a clear correlation between residual wavefront error measured by the AO system and the contrast sensitivity by comparing phase errors in observations of the same source, taken on different dates. We find a typical 5-σ\sigma contrast sensitivity of 23 × 1032-3~\times~10^{-3} at λ/D\sim\lambda/D. We explore the accuracy of spectral extraction of secondary components of binary systems by recovering the signal from a simulated source injected into several datasets. We outline data reduction procedures unique to GPI's IFS and describe a newly public data pipeline used for the presented analyses. We demonstrate recovery of astrometry and spectroscopy of two known companions to HR 2690 and HD 142527. NRM+polarimetry observations achieve differential visibility precision of σ0.4%\sigma\sim0.4\% in the best case. We discuss its limitations on Gemini-S/GPI for resolving inner regions of protoplanetary disks and prospects for future upgrades. We summarize lessons learned in observing with NRM in spectroscopic and polarimetric modes.Comment: Accepted to AJ, 22 pages, 14 figure
    corecore